
Revista Científica Ciencia y Método | Vol.01 | Núm.04 | Oct – Dic | 2023 | www.revistacym.com pág. 30
Cong, I., Choi, S., & Lukin, M. D. (2019). Quantum convolutional neural networks.
Nature Physics, 15(12), 1273–1278. https://doi.org/10.1038/s41567-019-0648-
8
Farhi, E., & Neven, H. (2018). Classification with quantum neural networks on near
term processors. arXiv preprint arXiv:1802.06002.
https://doi.org/10.48550/arXiv.1802.06002
Gacon, J., Zoufal, C., & Woerner, S. (2021). Simultaneous perturbation stochastic
approximation of the quantum natural gradient. Quantum, 5, 567.
Grant, E., Wossnig, L., Ostaszewski, M., & Benedetti, M. (2019). An initialization
strategy for addressing barren plateaus in parametrized quantum circuits.
Quantum, 3, 214. https://doi.org/10.22331/q-2019-12-09-214
Havlíček, V., Córcoles, A. D., Temme, K., Harrow, A. W., Kandala, A., Chow, J. M., &
Gambetta, J. M. (2019). Supervised learning with quantum-enhanced feature
spaces. Nature, 567(7747), 209–212. https://doi.org/10.1038/s41586-019-
0980-2
Huang, H. Y., Broughton, M., Mohseni, M., Babbush, R., Boixo, S., Neven, H., &
McClean, J. R. (2021). Power of data in quantum machine learning. Nature
Communications, 12(1), 2631. https://doi.org/10.1038/s41467-021-22539-9
McClean, J. R., Boixo, S., Smelyanskiy, V. N., Babbush, R., & Neven, H. (2018).
Barren plateaus in quantum neural network training landscapes. Nature
Communications, 9(1), 4812. https://doi.org/10.1038/s41467-018-07090-4
Mitarai, K., Negoro, M., Kitagawa, M., & Fujii, K. (2018). Quantum circuit learning.
Physical Review A, 98(3), 032309.
https://doi.org/10.1103/PhysRevA.98.032309
Peruzzo, A., McClean, J., Shadbolt, P., Yung, M. H., Zhou, X. Q., Love, P. J., ... &
O’Brien, J. L. (2014). A variational eigenvalue solver on a photonic quantum
processor. Nature Communications, 5, 4213.
https://doi.org/10.1038/ncomms5213
Preskill, J. (2018). Quantum Computing in the NISQ era and beyond. Quantum, 2, 79.
https://doi.org/10.22331/q-2018-08-06-79
Schuld, M., & Killoran, N. (2019). Quantum machine learning in feature Hilbert spaces.
Physical Review Letters, 122(4), 040504.
https://doi.org/10.1103/PhysRevLett.122.040504
Stokes, J., Izaac, J., Killoran, N., & Carleo, G. (2020). Quantum natural gradient.
Quantum, 4, 269. https://doi.org/10.22331/q-2020-05-25-269
Strubell, E., Ganesh, A., & McCallum, A. (2019). Energy and policy considerations for
deep learning in NLP. Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, 3645–3650.
https://doi.org/10.18653/v1/P19-1355