The impact of generative AI on the teaching work of high school students
Main Article Content
Abstract
The review positions the rise of generative AI in high school as an ambivalent pedagogical change and aims to analyze its impact on core teaching tasks. It uses an exploratory literature review design (2023–2025) with searches in Scopus, Web of Science, ERIC, and Education Source; it applies inclusion criteria for K-12/high school, peer screening, quality assessment, and thematic synthesis. The findings show: (i) greater efficiency in planning and design, with personalization by level and a shift in the teaching role toward curation and verification, but with a risk of curricular misalignment; (ii) tensions of academic integrity (plagiarism and detector limitations), which drive authentic assessment and traceability; (iii) sociocultural biases in model outputs that require critical mediation; and (iv) privacy concerns that demand institutional governance. It concludes that educational value depends on curricular guardrails, validation protocols, data policies, and professional development; it proposes a strategic tripod (teacher training, governance, process evaluation) and a future agenda on effects, alignment, and traceability.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
References
An, Y., & James, S. (2025). Generative AI integration in K–12 settings: Teachers’ perceptions and levels of integration. TechTrends. https://doi.org/10.1007/s11528-025-01114-9 DOI: https://doi.org/10.1007/s11528-025-01114-9
Arias-Macias, L. E. (2025). Inteligencias múltiples e inclusión educativa, un reto para el profesorado. Revista Científica Zambos, 4(1), 101-113. https://doi.org/10.69484/rcz/v4/n1/79 DOI: https://doi.org/10.69484/rcz/v4/n1/79
Ayala-Chavez, N. E., Lino-Garces, C. J., Zambrano-Zambrano, F. M. A., & Gonzalez-Segovia, L. A. (2025). Percepciones estudiantiles sobre la educación virtual implementada en el nivel secundario. Revista Científica Ciencia Y Método, 3(2), 88-101. https://doi.org/10.55813/gaea/rcym/v3/n2/57 DOI: https://doi.org/10.55813/gaea/rcym/v3/n2/57
Ayala-Chavez, N. E., Ordoñez-Loor, I. I., Marquez-Pazán, M. E., Yucailla-Verdesoto, M. M., & Marquez-Ruiz, S. D. C. (2025). Competencias digitales docentes y su relación con el aprendizaje autónomo en bachillerato. Revista Científica Ciencia Y Método, 3(2), 74-87. https://doi.org/10.55813/gaea/rcym/v3/n2/56 DOI: https://doi.org/10.55813/gaea/rcym/v3/n2/56
Bommasani, R., Narayanan, A., & Steinhardt, J. (2024). The many faces of AI bias: Measurement, sources, and mitigation. Computational Linguistics, 50(3), 1097–1143.
Caicedo-Basurto, R. L., Camacho-Medina, B. M., Quinga-Villa, C. A., Fonseca-Lombeida, A. F., & López-Freire, S. A. (2024). Análisis y beneficios de la educación en la era de la inteligencia artificial. Journal of Economic and Social Science Research, 4(4), 291–302. https://doi.org/10.55813/gaea/jessr/v4/n4/148 DOI: https://doi.org/10.55813/gaea/jessr/v4/n4/148
Cajamarca-Correa, M. A., Cangas-Cadena, A. L., Sánchez-Simbaña, S. E., & Pérez-Guillermo, A. G. (2024). Nuevas tendencias en el uso de recursos y herramientas de la Tecnología Educativa para la Educación Universitaria . Journal of Economic and Social Science Research, 4(3), 127–150. https://doi.org/10.55813/gaea/jessr/v4/n3/124 DOI: https://doi.org/10.55813/gaea/jessr/v4/n3/124
Chen, Y., et al. (2024). Generative AI-powered educational alignment: A framework for matching course descriptions and syllabus content. Proceedings of the 2024 ACM Conference on Innovation and Technology in Computer Science Education, 1–11.
Cotton, D. R. E., Cotton, P. A., & Shipway, J. R. (2023). Chatting and cheating: Ensuring academic integrity in the era of ChatGPT. Innovations in Education and Teaching International. https://doi.org/10.1080/14703297.2023.2190148 DOI: https://doi.org/10.35542/osf.io/mrz8h
EDUCAUSE. (2024). A framework for AI literacy. EDUCAUSE Review / Columbia Academic Commons.
Eke, D. O. (2023). ChatGPT and the rise of generative AI: Threat to academic integrity? Journal of Responsible Technology, 13, 100060. https://doi.org/10.1016/j.jrt.2023.100060 DOI: https://doi.org/10.1016/j.jrt.2023.100060
Elkhatat, A. (2023). Evaluating the authenticity of ChatGPT responses: A study on text-matching capabilities. International Journal for Educational Integrity, 19, 15. https://doi.org/10.1007/s40979-023-00137-0 DOI: https://doi.org/10.1007/s40979-023-00137-0
Fuentes-Riquero, S. Y. (2025). Estrategias de aprendizaje autónomo a través de las TIC en estudios sociales: Un enfoque para mejorar la autoeficacia y el rendimiento académico. Revista Científica Zambos, 4(1), 74-86. https://doi.org/10.69484/rcz/v4/n1/77 DOI: https://doi.org/10.69484/rcz/v4/n1/77
Guo, K., & Wang, D. (2023). To resist it or to embrace it? Examining ChatGPT’s potential to support teacher feedback in EFL writing. Education and Information Technologies. https://doi.org/10.1007/s10639-023-12146-0 DOI: https://doi.org/10.1007/s10639-023-12146-0
Hays, L., Jurkowski, O., & Kerr Sims, S. (2024). ChatGPT in K-12 education. TechTrends, 68, 281–294. https://doi.org/10.1007/s11528-023-00924-z DOI: https://doi.org/10.1007/s11528-023-00924-z
Hovy, D., & Prabhumoye, S. (2024). Bias and fairness in large language models: A survey. Computational Linguistics, 50(3), 1097–1143. DOI: https://doi.org/10.1162/coli_a_00524
Huang, L., & Li, Y. (2024). Privacy and personal data risk governance for generative artificial intelligence. Telecommunications Policy, 48(10), 102817. DOI: https://doi.org/10.1016/j.telpol.2024.102851
Jauhiainen, J. S., & Garagorry Guerra, A. (2024). Generative AI and education: Dynamic personalization of pupils’ school learning material with ChatGPT. Frontiers in Education, 9, 1288723. https://doi.org/10.3389/feduc.2024.1288723 DOI: https://doi.org/10.3389/feduc.2024.1288723
Kasneci, E., Sessler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., … Kuhn, J. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. Learning and Individual Differences, 103, 102274. https://doi.org/10.1016/j.lindif.2023.102274 DOI: https://doi.org/10.1016/j.lindif.2023.102274
Mai, D. T. T., Da, C. V., & Nguyen, N. V. (2024). The use of ChatGPT in teaching and learning: A systematic review through SWOT analysis approach. Frontiers in Education, 9, 1328769. https://doi.org/10.3389/feduc.2024.1328769 DOI: https://doi.org/10.3389/feduc.2024.1328769
Mendoza-Armijos, H. E., Rivadeneira-Moreira, J. C., Carvajal-Jumbo, A. V., & Saavedra-Calberto, I. M. (2023). Análisis de la relación entre el uso de dispositivos digitales y el rendimiento académico en matemáticas. Revista Científica Ciencia Y Método, 1(2), 43-57. https://doi.org/10.55813/gaea/rcym/v1/n2/14 DOI: https://doi.org/10.55813/gaea/rcym/v1/n2/14
Michuy-Guingla, T. E., Fajardo-Andrade, C. A., Fajardo-Andrade, M. F., Limongi-Basantes, D. S., & Quiroz-Parraga, F. A. (2025). La tecnología educativa en el proceso de aprendizaje de estudiantes con necesidades educativas especificas. Revista Científica Ciencia Y Método, 3(3), 42-58. https://doi.org/10.55813/gaea/rcym/v3/n3/59 DOI: https://doi.org/10.55813/gaea/rcym/v3/n3/59
Munaye, Y. Y., Admass, W., Belayneh, Y., Molla, A., & Asmare, M. (2025). ChatGPT in education: A systematic review on opportunities, challenges, and future directions. Algorithms, 18(6), 352. https://doi.org/10.3390/a18060352 DOI: https://doi.org/10.3390/a18060352
Nuñez-Espin, R. A. (2025). Implementación de una guía de formador de formadores para una educación personalizada, fundamentada en la teoría de las inteligencias múltiples. Revista Científica Zambos, 4(1), 166-177. https://doi.org/10.69484/rcz/v4/n1/84 DOI: https://doi.org/10.69484/rcz/v4/n1/84
OECD. (2024). AI, data governance and privacy. Paris: OECD Publishing.
Piedra-Castro, W. I., Burbano-Buñay, E. S., Tamayo-Verdezoto, J. J., & Moreira-Alcívar, E. F. (2024). Inteligencia artificial y su incidencia en la estrategia metodológica de aprendizaje basado en investigación. Journal of Economic and Social Science Research, 4(2), 178–196. https://doi.org/10.55813/gaea/jessr/v4/n2/106 DOI: https://doi.org/10.55813/gaea/jessr/v4/n2/106
Piedra-Castro, W. I., Cajamarca-Correa, M. A., Burbano-Buñay, E. S., & Moreira-Alcívar, E. F. (2024). Integración de la inteligencia artificial en la enseñanza de las Ciencias Sociales en la educación superior. Journal of Economic and Social Science Research, 4(3), 105–126. https://doi.org/10.55813/gaea/jessr/v4/n3/123 DOI: https://doi.org/10.55813/gaea/jessr/v4/n3/123
UNESCO. (2023). Guidance for generative AI in education and research. UNESCO.
van den Berg, G., & du Plessis, E. (2023). ChatGPT and generative AI: Possibilities for its contribution to lesson planning, critical thinking and openness in teacher education. Education Sciences, 13(10), 998. https://doi.org/10.3390/educsci13100998 DOI: https://doi.org/10.3390/educsci13100998
Veldhuis, A., Lo, P. Y., Kenny, S., & Antle, A. N. (2025). Critical artificial intelligence literacy: A scoping review and framework synthesis. International Journal of Child-Computer Interaction, 43, 100708. https://doi.org/10.1016/j.ijcci.2024.100708 DOI: https://doi.org/10.1016/j.ijcci.2024.100708
Vimos-Buenaño, K. E., Viteri-Ojeda, J. C., Naranjo-Sánchez, M. J., & Novillo-Heredia, K. H. (2024). Uso de la inteligencia artificial en los procesos de investigación científica, por parte de los docentes universitarios. Journal of Economic and Social Science Research, 4(4), 215–236. https://doi.org/10.55813/gaea/jessr/v4/n4/143 DOI: https://doi.org/10.55813/gaea/jessr/v4/n4/143
Wang, N., Li, Y., & Cong, F. (2025). University students’ privacy concerns towards generative artificial intelligence. Journal of Academic Ethics, 23, 2401–2422. https://doi.org/10.1007/s10805-025-09658-4 DOI: https://doi.org/10.1007/s10805-025-09658-4
Zhang, L. (2023). Cultural bias in large language models: A comprehensive analysis. Journal of Transcultural Communication, 10(2), 155–176.