Adaptive learning with intelligent platforms: effects on academic self-efficacy and academic performance
Main Article Content
Abstract
Adaptive learning supported by intelligent platforms has become a relevant approach to personalize learning paths in higher education, yet its contribution to academic self-efficacy and academic performance needs a contextualized synthesis in countries with institutional diversity and technological gaps, such as Ecuador. This bibliographic review integrated recent evidence on adaptive learning, learning analytics, and motivational variables linked to achievement, with emphasis on Latin American and Ecuadorian experiences. Searches were conducted in international and regional databases and university repositories, applying inclusion criteria focused on higher education, platforms that personalize content or feedback using data, and studies reporting self-efficacy and or performance outcomes. Findings show consistent associations between personalization, timely feedback, and analytics-based monitoring with higher performance and stronger perceptions of competence, although results vary by course design, instructor support, and data quality. In Ecuador, publications mainly describe the use of virtual learning environments and analytics for academic monitoring, while fewer studies analyze motivational mechanisms. The review concludes that adaptive learning effectiveness depends on pedagogical and institutional conditions and that local research with comparable designs and robust metrics remains necessary.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
References
Arksey, H., & O’Malley, L. (2005). Scoping studies: Towards a methodological framework. International Journal of Social Research Methodology, 8(1), 19–32. https://doi.org/10.1080/1364557032000119616 DOI: https://doi.org/10.1080/1364557032000119616
Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2), 191–215. https://doi.org/10.1037/0033-295X.84.2.191 DOI: https://doi.org/10.1037/0033-295X.84.2.191
Bandura, A. (1997). Self-efficacy: The exercise of control. W. H. Freeman.
Bravo Bravo, V., Fajardo Aguilar, G. M., Carrión Espinosa, W. E., & Salvatierra Avila, L. Y. (2022). Transformando la educación virtual: La revolución de la inteligencia artificial en la potenciación de la plataforma Moodle. Journal of Science and Research, 7(3), 140–164. https://doi.org/10.5281/zenodo.8229606
Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37–46. https://doi.org/10.1177/001316446002000104 DOI: https://doi.org/10.1177/001316446002000104
De Laet, T., Millecamp, M., Ortiz-Rojas, M., Jimenez, A., Maya, R., & Verbert, K. (2020). Adoption and impact of a learning analytics dashboard supporting the advisor–student dialogue in a higher education institute in Latin America. British Journal of Educational Technology, 51(4), 1002–1018. https://doi.org/10.1111/bjet.12962 DOI: https://doi.org/10.1111/bjet.12962
Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070 DOI: https://doi.org/10.1016/j.jbusres.2021.04.070
du Plooy, A., Casteleijn, D., & Franzsen, D. (2024). Personalized adaptive learning in higher education: A scoping review. Heliyon, 10(21), e39630. https://doi.org/10.1016/j.heliyon.2024.e39630 DOI: https://doi.org/10.1016/j.heliyon.2024.e39630
Ifenthaler, D., & Yau, J. Y.-K. (2020). Utilising learning analytics to support study success in higher education: A systematic review. Educational Technology Research and Development, 68(4), 1961–1990. https://doi.org/10.1007/s11423-020-09788-z DOI: https://doi.org/10.1007/s11423-020-09788-z
Ilaquiche-Toaquiza, M. O. (2025). La educación en la sociedad moderna con la adaptación y desafíos ante las demandas cambiantes del estado Ecuatoriano. Journal of Economic and Social Science Research, 5(1), 174–187. https://doi.org/10.55813/gaea/jessr/v5/n1/168 DOI: https://doi.org/10.55813/gaea/jessr/v5/n1/168
Kulik, J. A., & Fletcher, J. D. (2016). Effectiveness of intelligent tutoring systems: A meta-analytic review. Review of Educational Research, 86(1), 42–78. https://doi.org/10.3102/0034654315581420 DOI: https://doi.org/10.3102/0034654315581420
Levac, D., Colquhoun, H., & O’Brien, K. K. (2010). Scoping studies: Advancing the methodology. Implementation Science, 5, 69. https://doi.org/10.1186/1748-5908-5-69 DOI: https://doi.org/10.1186/1748-5908-5-69
Long, P., & Siemens, G. (2011, septiembre 12). Penetrating the fog: Analytics in learning and education. EDUCAUSE Review, 46(5), 30–40. https://er.educause.edu/articles/2011/9/penetrating-the-fog-analytics-in-learning-and-education
Ma, W., Adesope, O. O., Nesbit, J. C., & Liu, Q. (2014). Intelligent tutoring systems and learning outcomes: A meta-analysis. Journal of Educational Psychology, 106(4), 901–918. https://doi.org/10.1037/a0037123 DOI: https://doi.org/10.1037/a0037123
Maridueña Arroyave, M. R., Núñez Panta, P. A., & Bejarano Ospina, L. M. (2024). Learning analytics as a tool for academic monitoring of virtual students of University Technological Institutes. Revista Iberoamericana de educación, 8(1). https://www.revista-iberoamericana.org/index.php/es/article/view/263
McHugh, M. L. (2012). Interrater reliability: The kappa statistic. Biochemia Medica, 22(3), 276–282. https://doi.org/10.11613/BM.2012.031 DOI: https://doi.org/10.11613/BM.2012.031
Mendoza-Armijos, H. E., Rivadeneira-Moreira, J. C., Carvajal-Jumbo, A. V., & Saavedra-Calberto, I. M. (2023). Análisis de la relación entre el uso de dispositivos digitales y el rendimiento académico en matemáticas. Revista Científica Ciencia Y Método, 1(2), 43-57. https://doi.org/10.55813/gaea/rcym/v1/n2/14 DOI: https://doi.org/10.55813/gaea/rcym/v1/n2/14
Miao, F., & Holmes, W. (2023). Guidance for generative AI in education and research. UNESCO. https://doi.org/10.54675/EWZM9535 DOI: https://doi.org/10.54675/EWZM9535
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., et al. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71 DOI: https://doi.org/10.1136/bmj.n71
Prado-Ortega, M. X., & Gonzalez-Segarra, A. N. (2022). Analíticas de aprendizaje en la educación superior mediante la aplicación de herramientas colaborativas. Identidad Bolivariana, 6(2), 154–181. https://doi.org/10.37611/IB6ol2154-181 DOI: https://doi.org/10.37611/IB6ol2154-181
Regatto-Bonifaz, J., & Viteri-Miranda, V. (2023). La tecnología y su incidencia en la autoeficacia académica en universitarios del Ecuador. Revista de Investigación Enlace Universitario, 22(1), 106–118. https://doi.org/10.33789/enlace.22.1.129 DOI: https://doi.org/10.33789/enlace.22.1.129
Schunk, D. H., & DiBenedetto, M. K. (2020). Motivation and social cognitive theory. Contemporary Educational Psychology, 60, 101832. https://doi.org/10.1016/j.cedpsych.2019.101832 DOI: https://doi.org/10.1016/j.cedpsych.2019.101832
Tan, M., Hu, J., Yeo, A. C., & Cheong, L. (2025). Artificial intelligence-enabled adaptive learning platforms: A review. Computers and Education: Artificial Intelligence, 6, 100429. https://doi.org/10.1016/j.caeai.2025.100429 DOI: https://doi.org/10.1016/j.caeai.2025.100429
Verbert, K., Duval, E., Klerkx, J., Govaerts, S., & Santos, J. L. (2013). Learning analytics dashboard applications. American Behavioral Scientist, 57(10), 1500–1509. https://doi.org/10.1177/0002764213479363 DOI: https://doi.org/10.1177/0002764213479363
Yokoyama, S. (2024). The impact of academic self-efficacy on online learning outcomes. EXCLI Journal, 23, 960–966. https://doi.org/10.17179/excli2024-7239
Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education: Where are the educators? International Journal of Educational Technology in Higher Education, 16, 39. https://doi.org/10.1186/s41239-019-0171-0 DOI: https://doi.org/10.1186/s41239-019-0171-0
Zimmerman, B. J. (2002). Becoming a self-regulated learner: An overview. Theory Into Practice, 41(2), 64–70. https://doi.org/10.1207/s15430421tip4102_2 DOI: https://doi.org/10.1207/s15430421tip4102_2
Zumárraga-Espinosa, M. R., & Cevallos-Pozo, G. M. (2022). Autoeficacia, procrastinación y rendimiento académico en estudiantes universitarios de Ecuador. Alteridad, 17(2), 274–286. https://doi.org/10.17163/alt.v17n2.2022.08 DOI: https://doi.org/10.17163/alt.v17n2.2022.08