The role of SGLT2 inhibitors in renal protection beyond diabetes
Main Article Content
Abstract
This systematic review examines the role of sodium-glucose cotransporter 2 inhibitors (SGLT2i) in renal protection beyond diabetes, particularly in non-diabetic chronic kidney disease (CKD). Searches were conducted in PubMed, SciELO, Google Scholar and Cochrane, including randomized clinical trials, meta-analyses, preclinical studies and mechanistic reviews. Available evidence shows that SGLT2i, such as empagliflozin and dapagliflozin, slow eGFR decline, reduce albuminuria and decrease adverse renal outcomes, with significant risk reductions demonstrated in large-scale trials. In the EMPA-KIDNEY trial, empagliflozin reduced cardiorenal events by 28% (HR = 0.72; 95% CI: 0.64–0.82), with consistent effects in non-diabetic patients. Meta-analyses confirm sustained renal benefits and an acceptable safety profile, despite an increased risk of urogenital infections in non-diabetic individuals. At the molecular level, proposed mechanisms include restoration of tubuloglomerular feedback, AMPK activation, suppression of inflammatory and profibrotic pathways (NF-κB, TGF-β) and metabolic reprogramming via ketone body–mediated inhibition of mTORC1. These findings support SGLT2i as a promising therapeutic strategy for CKD irrespective of diabetic status.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
References
Cherney, D. Z. I., Dekkers, C. C. J., Barbour, S. J., Cattran, D., Abdul Gafor, A. H., Greasley, P. J., Laverman, G. D., Lim, S. K., Di Tanna, G. L., Reich, H. N., Vervloet, M. G., Wong, M. G., Gansevoort, R. T., & Heerspink, H. J. L. (2020). Effects of the SGLT2 inhibitor dapagliflozin on proteinuria in non-diabetic patients with chronic kidney disease (DIAMOND): A randomised, double-blind, crossover trial. The Lancet Diabetes & Endocrinology, 8(7), 582–593. https://doi.org/10.1016/S2213-8587(20)30162-5 DOI: https://doi.org/10.1016/S2213-8587(20)30162-5
Jardine, M., Zhou, Z., Heerspink, H. J. L., Hockham, C., Li, Q., Agarwal, R., Bakris, G. L., Cannon, C. P., Charytan, D. M., Greene, T., Levin, A., Li, J.-W., Neuen, B. L., Neal, B., Oh, R., Oshima, M., Pollock, C., Wheeler, D. C., de Zeeuw, D., … Perkovic, V. (2021). Kidney, cardiovascular, and safety outcomes of canagliflozin according to baseline albuminuria: A CREDENCE secondary analysis. Clinical Journal of the American Society of Nephrology, 16(3), 384–395. https://doi.org/10.2215/CJN.15260920 DOI: https://doi.org/10.2215/CJN.15260920
Heerspink, H. J. L., Stefánsson, B. V., Correa-Rotter, R., Chertow, G. M., Greene, T., Hou, F.-F., Mann, J. F. E., McMurray, J. J. V., Lindberg, M., Rossing, P., Sjöström, C. D., Toto, R. D., Langkilde, A.-M., Wheeler, D. C., & DAPA-CKD Trial Committees and Investigators. (2020). Dapagliflozin in patients with chronic kidney disease. The New England Journal of Medicine, 383(15), 1436–1446. https://doi.org/10.1056/NEJMoa2024816 DOI: https://doi.org/10.1056/NEJMoa2024816
Kim, M. N., Moon, J. H., & Cho, Y. M. (2021). Sodium-glucose cotransporter-2 inhibition reduces cellular senescence in the diabetic kidney by promoting ketone body-induced NRF2 activation. Diabetes, Obesity & Metabolism, 23(11), 2561–2571. https://doi.org/10.1111/dom.14503 DOI: https://doi.org/10.1111/dom.14503
Lima, E., Araújo, A., Medeiros, C., et al. (2023). Risk of urogenital infections in non-diabetic patients treated with SGLT2 inhibitors: A systematic review and meta-analysis. Diabetes Research and Clinical Practice, 198, Article 110587. https://doi.org/10.1016/j.diabres.2023.110587
Neal, B., Mahaffey, K. W., de Zeeuw, D., et al. (2019). Effects of canagliflozin on renal and cardiovascular outcomes. American College of Cardiology. https://www.acc.org/latest-in-cardiology/clinical-trials/2019/04/04/14/23/credence
Neal, B., Perkovic, V., Mahaffey, K. W., de Zeeuw, D., Fulcher, G., Erondu, N., Shaw, W., Law, G., Desai, M., Matthews, D. R., & CANVAS Program Collaborative Group. (2017). Canagliflozin and cardiovascular and renal events in type 2 diabetes. The New England Journal of Medicine, 377(7), 644–657. https://doi.org/10.1056/NEJMoa1611925 DOI: https://doi.org/10.1056/NEJMoa1611925
Perkovic, V., Jardine, M. J., Neal, B., et al. (2019). Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. The New England Journal of Medicine, 380(24), 2295–2306. https://doi.org/10.1056/NEJMoa1811744 DOI: https://doi.org/10.1056/NEJMoa1811744
Stompór, T., Adamczak, M., Kurnatowska, I., Naumnik, B., Nowicki, M., Tylicki, L., Winiarska, A., & Krajewska, M. (2023). Pharmacological nephroprotection in non-diabetic chronic kidney disease-Clinical practice position statement of the Polish Society of Nephrology. Journal of Clinical Medicine, 12(16), 5184. https://doi.org/10.3390/jcm12165184 DOI: https://doi.org/10.3390/jcm12165184
Tomita, I., Kume, S., Sugahara, S., et al. (2020). SGLT2 inhibition mediates protection from diabetic kidney disease by promoting ketone body-induced mTORC1 inhibition. Cell Metabolism, 32(3), 404–419.e6. https://doi.org/10.1016/j.cmet.2020.06.020 DOI: https://doi.org/10.1016/j.cmet.2020.06.020
Tuttle, K. R., McKinney, T. D., Davidson, J. A., et al. (2023). SGLT2 inhibitors in diabetic and non-diabetic chronic kidney disease. Medicines, 11(2), Article 279. https://doi.org/10.3390/medicines11020279 DOI: https://doi.org/10.3390/biomedicines11020279
U.S. Food and Drug Administration. (2023). Invokana (canagliflozin) tablets prescribing information [Prescribing information]. U.S. Food and Drug Administration. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/204042s040lbl.pdf
Villa-Feijoó, A. L. (2022). Estrategias de Promoción de la Salud y Prevención de Enfermedades desde la Perspectiva de la Enfermería en Ecuador. Revista Científica Zambos, 1(3), 1-14. https://doi.org/10.69484/rcz/v1/n3/29 DOI: https://doi.org/10.69484/rcz/v1/n3/29
Yacelga-Gómez, J. J., Valenzuela-Madera, A. J., Chicaiza-Montero, J. F., Medina-León, J. A., & Cargua-Usca, A. M. (2025). Automedicación con antibióticos en Ecuador y Latinoamérica: magnitud, determinantes y propuestas de intervención. Revista Científica Ciencia Y Método, 3(4), 14-23. https://doi.org/10.55813/gaea/rcym/v3/n4/94 DOI: https://doi.org/10.55813/gaea/rcym/v3/n4/94
Zelniker, T. A., Wiviott, S. D., Raz, I., et al. (2019). SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes. The Lancet, 393(10166), 31–39. https://doi.org/10.1016/S0140-6736(18)32590-X DOI: https://doi.org/10.1016/S0140-6736(18)32590-X
Zhang, X., & Deng, Y. (2025). Application of SGLT2 inhibitors in non-diabetic chronic kidney disease: Mechanisms, efficacy, and safety. American Journal of Nephrology. Advance online publication. https://doi.org/10.1159/000546079 DOI: https://doi.org/10.1159/000546079
Zhao, Y., Xu, L., Tian, D., et al. (2022). SGLT2 inhibitors improve kidney function and morphology by regulating renal metabolic reprogramming. Journal of Translational Medicine, 20, Article 326. https://doi.org/10.1186/s12967-022-03526-4 DOI: https://doi.org/10.1186/s12967-022-03629-8