Feasibility Study for the Strategic Placement of Energy Storage Systems on Distribution Feeders
Main Article Content
Abstract
Ecuador’s electrical distribution networks face operational constraints such as high technical losses, voltage deviations, and low reliability in the context of growing demand and increasing penetration of renewable energy sources. This study assesses the technical and economic feasibility of implementing a battery energy storage system with a nominal capacity of 1400 kWh and a discharge power of 30 kW in a distribution feeder, using electrical modeling in specialized software, power flow simulations under multiple loading conditions, and a multicriteria analysis that includes indicators such as Joule losses, voltage regulation, operational reliability, and economic metrics. The impact on critical parameters of a distribution system with 253 transformers is evaluated, considering international interconnection standards and real operational data. Results show that the optimal location of the storage system reduces total active losses from 412.6 to 361.4 kW, equivalent to a 12.4% reduction, increases the minimum voltage from 0.92 to 0.97 per unit, decreases energy not supplied by 18%, and yields a return on investment of 14.2% with a levelized cost of energy of 0.118 USD/kWh. Battery energy storage is therefore a viable solution to optimize feeder operation, simultaneously improving energy efficiency, voltage stability, and economic profitability.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
References
Agencia de Regulación y Control de Energía y Recursos Naturales No Renovables. (2023). Reglamento Nro. ARCERNNR 002/20 (Codificada): Calidad del servicio de distribución y comercialización de energía eléctrica [Resolución Nro. ARCERNNR-003/2023]. https://www.arconel.gob.ec/wp-content/uploads/downloads/2024/07/Regulacion-002-20_codificada.pdf
Bhusal, N., Gautam, M., Benidris, M., & Louis, S. J. (2020). Optimal sizing and siting of multi-purpose utility-scale shared energy storage systems. In Proceedings of the 52nd North American Power Symposium (NAPS). IEEE (1–6). https://doi.org/10.48550/arXiv.2008.07900 DOI: https://doi.org/10.1109/NAPS50074.2021.9449696
Boonluk, P., Khunkitti, S., Fuangfoo, P., & Siritaratiwat, A. (2020). Optimal siting and sizing of battery energy storage systems for distribution networks. Batteries, 6(4), 56. https://doi.org/10.3390/batteries6040056 DOI: https://doi.org/10.3390/batteries6040056
Carpinelli, G., Noce, C., Russo, A., Varilone, P., & Verde, P. (2024). Optimal siting and sizing of battery energy storage systems in unbalanced active distribution systems with multi-objective constraints under uncertainty. International Journal of Electrical Power & Energy Systems, 162, 110316. https://doi.org/10.1016/j.ijepes.2024.110316 DOI: https://doi.org/10.1016/j.ijepes.2024.110316
Das, C. K., Bass, O., Kothapalli, G., Mahmoud, T. S., & Habibi, D. (2021). Overview of energy storage systems in distribution networks: Placement, sizing, operation, and power quality. Renewable and Sustainable Energy Reviews, 91, 1205–1230. https://doi.org/10.1016/j.rser.2018.03.068 DOI: https://doi.org/10.1016/j.rser.2018.03.068
Figueroa-Guerra, D. A., Culqui-Tipan, J. F., Núñez-Verdezoto, M. D., & Cruz-Panchi, O. D. (2022). Modelamiento de un sistema fotovoltaico conectado a la red considerando la variación de irradiancia solar en Homer Pro. Revista Ingeniería, Investigación y Desarrollo, 22(1), 60–71. https://doi.org/10.19053/1900771X.v22.n1.2022.14456 DOI: https://doi.org/10.19053/1900771X.v22.n1.2022.14456
Figueroa-Guerra, D., Murillo, J., Ortega-Loza, F., & Delgado-Vera, C. (2025). Estudio comparativo de sistemas de energía basados en baterías de ion litio y flujo de vanadio para aplicaciones de generación distribuida. Ingeniería e Innovación, 13(2), 16-30. https://doi.org/10.21897/rii.3986 DOI: https://doi.org/10.21897/rii.3986
Guerrero-Calero, J. M., Romero-Castro, M. I., Mieles-Giler, J. W., & Moran-González, M. R. (2025). Análisis del recurso solar en San Francisco de Paján (Ecuador): bases para la implementación de sistemas fotovoltaicos sostenibles. Revista Científica Ciencia Y Método, 3(4), 177-188. https://doi.org/10.55813/gaea/rcym/v3/n4/102 DOI: https://doi.org/10.55813/gaea/rcym/v3/n4/102
Institute of Electrical and Electronics Engineers. (2024). IEEE standard for interconnection and interoperability of distributed energy resources with associated electric power systems interfaces (IEEE 1547-2024). IEEE Standards Association. https://standards.ieee.org/ieee/1547/10906/
International Electrotechnical Commission. (2022). Communication networks and systems for power utility automation. IEC 61850-7-420. https://webstore.iec.ch/en/publication/64570
Khajeh, H., Parthasarathy, C., Doroudchi, E., & Laaksonen, H. (2023). Optimized siting and sizing of distribution-network-connected battery energy storage system providing flexibility services for system operators. Energy, 285, 129490. https://doi.org/10.1016/j.energy.2023.129490 DOI: https://doi.org/10.1016/j.energy.2023.129490
Moghimian Hoosh, S., Ouerdane, H., Terzija, V., & Pozo, D. (2023). Assessing the value of energy storage systems for distribution grid applications. 2023 IEEE 7th Conference on Energy Internet and Energy System Integration (EI2). IEEE. https://doi.org/10.1109/EI259745.2023.10513229 DOI: https://doi.org/10.1109/EI259745.2023.10513229
Yang, F., Hu, Y., Zhang, L., Xu, Z., Wu, Z., & Gu, W. (2023). Optimal siting and sizing of distributed energy storage in distribution networks considering isolated islanding duration uncertainty. Journal of Electric Power Science and Technology, 38(1), 43–54. https://doi.org/10.19781/j.issn.1673-9140.2023.01.006
Yi, J. H., Cherkaoui, R., & Paolone, M. (2019). Optimal allocation of energy storage systems in active distribution networks to achieve capability of dispatch of distributed generation. arXiv preprint arXiv:1909.12667. https://doi.org/10.48550/arXiv.1909.12667