Effectiveness of arbuscular mycorrhizal associations in the plant-mediated removal of zinc from contaminated soils in Mocache County, Los Ríos Province

Main Article Content

Oscar Oswaldo Prieto-Benavides
Edwin Miguel Jiménez-Romero
Erick Alberto Eguez-Enriquez
Narcisa Claribel Sánchez-Loor

Abstract

Soil contamination by zinc (Zn) is a limiting factor for plant productivity and an environmental risk in intensive agricultural systems. Arbuscular mycorrhizal fungi (AMF) are symbiotic associations capable of modifying metal dynamics in the rhizosphere, contributing to the acquisition, immobilization, or controlled translocation of Zn under stress conditions. The aim of this study was to evaluate the potential of AMF to enhance Zn phytoextraction in contaminated soils from Mocache, Ecuador, using Oryza sativa as a trap plant. Sixteen AMF species were identified, including Claroideoglomus lamellosum, Acaulospora colombiana, A. koskei, and A. bireticulata, all exhibiting low spore densities. Rice plants were inoculated with a commercial inoculum and exposed to Zn concentrations of 100, 150, and 200 mg kg⁻¹. Significant differences in plant height and number of leaves were observed among treatments, reflecting the interaction between AMF inoculation and metal stress. Although the analysis of variance did not show significant differences in soil Zn concentrations after the experiment, inoculated units showed decreasing trends. The findings indicate that AMF inoculation can enhance agronomic performance and support Zn phytoextraction, representing a viable alternative for the remediation of metal-contaminated agricultural soils.

Downloads

Download data is not yet available.

Article Details

Section

Artículos

How to Cite

Prieto-Benavides, O. O., Jiménez-Romero, E. M., Eguez-Enriquez, E. A., & Sánchez-Loor, N. C. (2026). Effectiveness of arbuscular mycorrhizal associations in the plant-mediated removal of zinc from contaminated soils in Mocache County, Los Ríos Province. Scientific Journal Science and Method, 4(1), 122-139. https://doi.org/10.55813/gaea/rcym/v4/n1/136

References

Amezcua, J. C., & Lara, M. (2017). El Zinc en las Plantas. Ciencia, 68(3), 28–35. http://www.smart-fertilizer.com/es/articles/zinc-in-plants

Beltrán Villavicencio, M. (2001). Fitoextracción en suelos contaminados con cadmio y zinc usando especies vegetales comestibles [Tesis de maestría, Universidad Autónoma Metropolitana, Unidad Azcapotzalco]. Repositorio Institucional Zaloamati. https://zaloamati.azc.uam.mx/handle/11191/185

Caicedo-Aldaz, J. C., & Herrera-Sánchez, D. J. (2022). El Rol de la Agroecología en el Desarrollo Rural Sostenible en Ecuador. Revista Científica Zambos, 1(2), 1-16. https://doi.org/10.69484/rcz/v1/n2/24 DOI: https://doi.org/10.69484/rcz/v1/n2/24

Calle, C. M., Calle, C. A. Á., & Rivillas Osorio, C. A. (2019). Micorrizas arbusculares. En Centro Nacional de Investigaciones de Café (Ed.), Aplicación de ciencia tecnología e innovación en el cultivo del café ajustado a las condiciones particulares del Huila: Vol. 1. 2015–2019. Cenicafé. https://doi.org/10.38141/cenbook-0005 DOI: https://doi.org/10.38141/cenbook-0005

Camarena, G. (2012). Interaccion planta-hongos micorrizicos arbusculares. Revista Chapingo, Serie Ciencias Forestales y Del Ambiente, 18(3), 409–421. https://doi.org/10.5154/r.rchscfa.2011.11.093 DOI: https://doi.org/10.5154/r.rchscfa.2011.11.093

Campuzano-Santana, K. L., Alarcón-Giraldo, V. D. ., & España-Lema, A. I. . (2025). Evaluación ambiental de sistemas agrícolas y forestales mediante análisis poblacional de nematodos como bioindicadores. Journal of Economic and Social Science Research, 5(2), 132-143. https://doi.org/10.55813/gaea/jessr/v5/n2/193 DOI: https://doi.org/10.55813/gaea/jessr/v5/n2/193

Cardini, A., Pellegrino, E., Declerck, S., Calonne-Salmon, M., Mazzolai, B., & Ercoli, L. (2021). Direct transfer of zinc between plants is channelled by common mycorrhizal network of arbuscular mycorrhizal fungi and evidenced by changes in expression of zinc transporter genes in fungus and plant. Environmental Microbiology, 23(10), 5883–5900. https://doi.org/10.1111/1462-2920.15542 DOI: https://doi.org/10.1111/1462-2920.15542

Chen, B. D., Li, X. L., Tao, H. Q., Christie, P., & Wong, M. H. (2003). The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc. Chemosphere, 50(6), 839–846. https://doi.org/10.1016/S0045-6535(02)00228-X DOI: https://doi.org/10.1016/S0045-6535(02)00228-X

Delgadillo, A. E., González, C. A., Prieto, F., Villagómez, J. R., & Acevedo, O. (2011). Fitorremediación una alterntiva para eliminar la contaminación. Tropical and Subtropical Agroecosystems, 14(2), 597–612. https://www.scielo.org.mx/pdf/tsa/v14n2/v14n2a2.pdf

Garzón, L. P. (2015). Importancia de las micorrizas arbusculares (ma) para un uso sostenible del suelo en la amazonia colombiana. Luna Azul, (42), 217–234. https://doi.org/10.17151/luaz.2016.42.14 DOI: https://doi.org/10.17151/luaz.2016.42.14

Gavito, M. E., Pérez, C., González, M. C., Vieyra, H. T., & Martínez, T. M. (2008). High compatibility between arbuscular mycorrhizal fungal communities and seedlings of different land use types in a tropical dry ecosystem. Mycorrhiza (19), 47-60. https://doi.org/10.1007/s00572-008-0203-4 DOI: https://doi.org/10.1007/s00572-008-0203-4

Gerdemann, J. W. ;, & Nicolson, T. H. (1963). Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society, 46(2), 235-244. http://doi.org/10.1016/S0007-1536(63)80079-0 DOI: https://doi.org/10.1016/S0007-1536(63)80079-0

Guevara, E., & Guenni, O. (2014). Densidad y longitud de raíces en plantas de Leucaena leucocephala (Lam.) De Wit. Multiciencias, 13(4), 372–380. https://www.redalyc.org/pdf/904/90430055005.pdf

Guo, Y., Sommer, N., Martin, K., & Rasche, F. (2023). Rhizophagus irregularis improves Hg tolerance of Medicago truncatula by upregulating the Zn transporter genes ZIP2 and ZIP6. Mycorrhiza, 33, 23–32. https://doi.org/10.1007/s00572-022-01100-6 DOI: https://doi.org/10.1007/s00572-022-01100-6

Guthery, F. S., Green, M. C., Masters, R. E., DeMaso, S. J., Wilson, H. M., & Steubing, F. B. (2001). Land cover and bobwhite abundance on Oklahoma farms and ranches. The Journal of Wildlife Management, 65(4), 838–849. https://doi.org/10.2307/3803033 DOI: https://doi.org/10.2307/3803033

Herrera-Sánchez, D. J., & Gavilánez-Buñay, T. C. (2023). Estrategias de agricultura regenerativa para mejorar la salud del suelo. Revista Científica Ciencia Y Método, 1(2), 15-28. https://doi.org/10.55813/gaea/rcym/v1/n2/12 DOI: https://doi.org/10.55813/gaea/rcym/v1/n2/12

Hickey Darquea, A. T. (2020). The hidden symbiont: Exploring arbuscular mycorrhizae in the Ecuadorian Amazon [Tesis de pregrado, Universidad San Francisco de Quito]. Repositorio Digital USFQ. http://repositorio.usfq.edu.ec/handle/23000/9576

Jungk, A., & Claassen, N. (1997). Ion diffusion in the soil–root system. En D. L. Sparks (Ed.), Advances in agronomy (Vol. 61, pp. 53–110). Academic Press. https://doi.org/10.1016/S0065-2113(08)60662-8 DOI: https://doi.org/10.1016/S0065-2113(08)60662-8

Kabata-Pendias, A. (2000). Trace elements in soils and plants (3.ª ed.). CRC Press. https://doi.org/10.1201/9781420039900 DOI: https://doi.org/10.1201/9781420039900

Klironomos, J. N., McCune, J., & Moutoglis, P. (2004). Species of arbuscular mycorrhizal fungi affect mycorrhizal responses to simulated herbivory. Applied Soil Ecology, 26(2), 133–141. https://doi.org/10.1016/j.apsoil.2003.11.001 DOI: https://doi.org/10.1016/j.apsoil.2003.11.001

Lovelock, C. E., Andersen, K., & Morton, J. B. (2003). Arbuscular mycorrhizal communities in tropical forests are affected by host tree species and environment. Oecologia, 135(2), 268–279. https://doi.org/10.1007/s00442-002-1166-3 DOI: https://doi.org/10.1007/s00442-002-1166-3

Mamani Sánchez, B. (2011). Principales Funciones de lo Macronutrientes y Síntomas de Deficiencia en las plantas. Sistemas de Producción Vegetal II, 23–25. https://www.uaeh.edu.mx/investigacion/productos/4781/sistemas_de_produccion_vegetal_2.pdf

Mieles-Giler, J. W., Guerrero-Calero, J. M., Moran-González, M. R., & Zapata-Velasco, M. L. (2024). Evaluación de la degradación ambiental en hábitats Naturales. Journal of Economic and Social Science Research, 4(3), 65–88. https://doi.org/10.55813/gaea/jessr/v4/n3/121 DOI: https://doi.org/10.55813/gaea/jessr/v4/n3/121

Ministerio del Ambiente. (2015). Texto unificado de legislación secundaria del Ministerio del Ambiente, Libro VI, Anexo 2: Norma de calidad ambiental del recurso suelo y criterios de remediación para suelos contaminados (Acuerdo Ministerial 097-A). Registro Oficial, Edición Especial 387. https://faolex.fao.org/docs/pdf/ecu112181.pdf

Moina-Quimi, E., Oviedo-Anchundia, R., Nieto-Barciona, S., Herrera-Samaniego, P., & Barcos-Arias, M. (2018). Evaluación de los Hongos Micorrízicos Arbusculares de zonas del trópico húmedo del Ecuador. Bionatura, 3(1), 531–536. https://doi.org/10.21931/RB/2018.03.01.9 DOI: https://doi.org/10.21931/RB/2018.03.01.9

Oehl, F., Laczko, E., Bogenrieder, A., Stahr, K., Bösch, R., van der Heijden, M. G. A., & Sieverding, E. (2010). Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biology and Biochemistry, 42(5), 724–738. https://doi.org/10.1016/j.soilbio.2010.01.006 DOI: https://doi.org/10.1016/j.soilbio.2010.01.006

Rosales, J. Y., Pérez, L., Sánchez, I., & Cruz, J. (2022). Micorrizas arbusculares y su efecto sobre el desarrollo vegetativo de portainjertos de limón (Citrus limon L.). Universidad Nacional Agraria, 22(38). https://lacalera.una.edu.ni/index.php/CALERA/article/view/487/817 DOI: https://doi.org/10.5377/calera.v22i38.14152

Rubio, C., González Weller, D., Martín-Izquierdo, R. E., Revert, C., Rodríguez, I., & Hardisson, A. (2007). El zinc: Oligoelemento esencial. Nutricion Hospitalaria, 22(1), 101–107. https://doi.org/10.23853/bsehm.2001.0510 DOI: https://doi.org/10.23853/bsehm.2001.0510

Saboor, A., Ali, M. A., Danish, S., Ahmed, N., Fahad, S., Datta, R., Ansari, M. J., Nasif, O., Rahman, M. H. ur, & Glick, B. R. (2021). Effect of arbuscular mycorrhizal fungi on the physiological functioning of maize under zinc-deficient soils. Scientific Reports, 11(1), 1–11. https://doi.org/10.1038/s41598-021-97742-1 DOI: https://doi.org/10.1038/s41598-021-97742-1

Secretaría Nacional de Planificación. (2021). Plan de creación de oportunidades 2021–2025: Plan nacional de desarrollo. Secretaría Nacional de Planificación. https://www.planificacion.gob.ec/wp-content/uploads/2021/09/Plan-de-Creación-de-Oportunidades-2021-2025-Aprobado.pdf

Vallejos-Torres, G., Tenorio-Cercado, M. A., Gaona-Jimenez, N., Corazon-Guivin, M. A., Luna, J. O., Paredes, C. I., Saavedra, J., Tuesta, J. C., Tuesta, O. A., Alguacil, M. M., Becerra, A. G., & Marín, C. (2022). Multiplication of arbuscular mycorrhizal fungi isolated from cocoa cultivated soils. Bioagro, 34(3), 265–276. https://doi.org/10.51372/bioagro343.6 DOI: https://doi.org/10.51372/bioagro343.6

Vilcapoma Areche, D. (2019). Fitoextracción de cadmio y zinc en suelos contaminados utilizando Lactuca sativa var. White Boston, en la EEA El Mantaro – Junín 2019 [Tesis de maestría, Universidad Nacional del Centro del Perú]. Repositorio Institucional UNCP. https://hdl.handle.net/20.500.12894/5460

Viteri Viteri, G. I., & Zambrano, C. E. (2016). Comercialización de arroz en Ecuador: Análisis de la evolución de precios en el eslabón productor-consumidor. Ciencia y Tecnología, 9(2), 11–17. https://dialnet.unirioja.es/servlet/articulo?codigo=6261797 DOI: https://doi.org/10.18779/cyt.v9i2.192