Trichoderma spp. as Inducers of Salt Stress Tolerance and Promoters of Early Growth in Capsicum annuum L. Seedlings

Main Article Content

Oscar Oswaldo Prieto-Benavides
Edwin Miguel Jiménez-Romero
Geraldine Maittee Mendoza-Velez
Jeniffer Lisset Lopez-Aguiar

Abstract

The cultivation of Capsicum annuum L. (pepper) is of great agricultural and nutritional importance; however, its productivity is limited by salt stress, an abiotic factor that significantly affects plant development and vigor. This study evaluates the response of pepper seedlings inoculated with Trichoderma gamsii, Trichoderma asperellum, and Trichoderma atroviride under saline conditions, analyzing both the in vitro performance of the strains and their effects on plant growth. Variables such as mycelial growth, plant height, number of leaves, and root biomass were assessed. The results indicated that T. asperellum reached a radial growth of 87.88 mm on PDA medium with 1000 mg/L of NaCl and maintained 86.11 mm even at 3000 mg/L, demonstrating high tolerance. In seedlings evaluated 15 days after the first application, this strain at a concentration of 1 × 10¹⁰ CFU/mL promoted an average height of 28.64 cm, a basal stem diameter of 18.58 mm, and a root biomass of 3.10 g, all significantly higher than the control. The implementation of this strain in seedling production not only enhances crop resilience to salt stress but also represents a sustainable alternative to chemical inputs, contributing to more efficient and environmentally responsible agricultural practices.

Downloads

Download data is not yet available.

Article Details

Section

Artículos

How to Cite

Prieto-Benavides, O. O., Jiménez-Romero, E. M., Mendoza-Velez, G. M., & Lopez-Aguiar, J. L. (2026). Trichoderma spp. as Inducers of Salt Stress Tolerance and Promoters of Early Growth in Capsicum annuum L. Seedlings. Scientific Journal Science and Method, 4(1), 140-153. https://doi.org/10.55813/gaea/rcym/v4/n1/137

References

Abasolo-Pacheco, F., Sellan-Canales, M. J., García-Gallirgos, V. J., & Onofre-Correa, J. A. (2025). Desarrollo vegetativo del maíz bajo influencia de diluciones minerales y biológicas. Revista Científica Zambos, 4(2), 265-280. https://doi.org/10.69484/rcz/v4/n2/121 DOI: https://doi.org/10.69484/rcz/v4/n2/121

Andrade-Hoyos, P., Rivera-Jiménez, M. N., Landero-Valenzuela, N., Silva-Rojas, H. V., Martínez-Salgado, S. J., & Romero-Arenas, O. (2023). Beneficios ecológicos y biológicos del hongo cosmopolita Trichoderma spp. en la agricultura: una perspectiva en el campo mexicano. Revista Argentina de Microbiología, 55(4), 366–377. https://doi.org/10.1016/j.ram.2023.06.005 DOI: https://doi.org/10.1016/j.ram.2023.06.005

Andrzejak, R., & Janowska, B. (2022). Trichoderma spp. Improves Flowering, Quality, and Nutritional Status of Ornamental Plants. International Journal of Molecular Sciences, 23(24), 15662. https://doi.org/10.3390/ijms232415662 DOI: https://doi.org/10.3390/ijms232415662

Bello, A. S., Ben-Hamadou, R., Hamdi, H., Saadaoui, I., & Ahmed, T. (2021). Application of Cyanobacteria (Roholtiella sp.) Liquid Extract for the Alleviation of Salt Stress in Bell Pepper (Capsicum annuum L.) Plants Grown in a Soilless System. Plants, 11(1), 104. https://doi.org/10.3390/plants11010104 DOI: https://doi.org/10.3390/plants11010104

Campuzano-Santana, K. L., Alarcón-Giraldo, V. D. ., & España-Lema, A. I. . (2025). Evaluación ambiental de sistemas agrícolas y forestales mediante análisis poblacional de nematodos como bioindicadores. Journal of Economic and Social Science Research, 5(2), 132-143. https://doi.org/10.55813/gaea/jessr/v5/n2/193 DOI: https://doi.org/10.55813/gaea/jessr/v5/n2/193

Carrillo-Montoya, K., & Vargas-Rojas, J. C. (2023). Rendimiento, características morfológicas y calidad del chile dulce (Capsicum annuum L.) bajo dos densidades de siembra y tipos de podas. Agronomía Mesoamericana, 53659. https://doi.org/10.15517/am.2023.53659 DOI: https://doi.org/10.15517/am.2023.53659

Cavalcante, A. L. A., Negreiros, A. M. P., Melo, N. J. de A., Santos, F. J. Q., Soares Silva, C. S. A., Pinto, P. S. L., Khan, S., Sales, I. M. M., & Sales Júnior, R. (2025). Adaptability and Sensitivity of Trichoderma spp. Isolates to Environmental Factors and Fungicides. Microorganisms, 13(7), 1689. https://doi.org/10.3390/microorganisms13071689 DOI: https://doi.org/10.3390/microorganisms13071689

Chacaguasay-Apugllon, E. N., Sánchez-Quiñonez, D. F., Gavilánez-Buñay, T. C., & Rivera-Toapanta, E. A. (2025). Concentración de fenoles totales y flavonoides en fabáceas forrajeras y arbustivas y uso como bioestimulante. Revista Científica Zambos, 4(1), 30-44. https://doi.org/10.69484/rcz/v4/n1/74 DOI: https://doi.org/10.69484/rcz/v4/n1/74

Diniz, G. L., Costa, C. C., Sousa, V. F. de O., Lopes, K. P., Bomfim, M. P., & Santos, J. B. dos. (2022). Uso de Trichoderma spp e estresse salino na produção de mudas de melancia. Revista Em Agronegócio e Meio Ambiente, 15(4), 1–16. https://doi.org/10.17765/2176-9168.2022v15n4e9939 DOI: https://doi.org/10.17765/2176-9168.2022v15n4e9939

Geng, Y., Chen, S., Lv, P., Li, Y., Li, J., Jiang, F., Wu, Z., Shen, Q., & Zhou, R. (2025). Positive Role of Trichoderma harzianum in Increasing Plant Tolerance to Abiotic Stresses: A Review. Antioxidants, 14(7), 807. https://doi.org/10.3390/antiox14070807 DOI: https://doi.org/10.3390/antiox14070807

Haj-Amor, Z., Araya, T., Kim, D.-G., Bouri, S., Lee, J., Ghiloufi, W., Yang, Y., Kang, H., Jhariya, M. K., Banerjee, A., & Lal, R. (2022). Soil salinity and its associated effects on soil microorganisms, greenhouse gas emissions, crop yield, biodiversity and desertification: A review. Science of The Total Environment, 843, 156946. https://doi.org/10.1016/j.scitotenv.2022.156946 DOI: https://doi.org/10.1016/j.scitotenv.2022.156946

Haouhach, S., Karkachi, N., Oguiba, B., Sidaoui, A., Chamorro, I., Kihal, M., & Monte, E. (2020). Three New Reports of Trichoderma in Algeria: T. atrobrunneum, (South) T. longibrachiatum (South), and T. afroharzianum (Northwest). Microorganisms, 8(10), 1455. https://doi.org/10.3390/microorganisms8101455 DOI: https://doi.org/10.3390/microorganisms8101455

Herrera-Sánchez, D. J., & Gavilánez-Buñay, T. C. (2023). Estrategias de agricultura regenerativa para mejorar la salud del suelo. Revista Científica Ciencia Y Método, 1(2), 15-28. https://doi.org/10.55813/gaea/rcym/v1/n2/12 DOI: https://doi.org/10.55813/gaea/rcym/v1/n2/12

Hu, G., Zhao, Z., Wei, Y., Hu, J., Zhou, Y., Li, J., & Yang, H. (2025). Trichoderma asperellum 22043: Inoculation Promotes Salt Tolerance of Tomato Seedlings Through Activating the Antioxidant System and Regulating Stress-Resistant Genes. Journal of Fungi, 11(4), 253. https://doi.org/10.3390/jof11040253 DOI: https://doi.org/10.3390/jof11040253

Kumar, K., Rathore, S., Kumar, S., Mishra, M., Pandey, S., & Mishra, R. K. (2019). Effect of salt tolerant Trichoderma spp on growth and nodulation of mungbean (Vigna radiata L.). In Journal of Food Legumes (Vol. 32, Issue 4).

Liu, Z., Xu, N., Pang, Q., Khan, R. A. A., Xu, Q., Wu, C., & Liu, T. (2023). A Salt-Tolerant Strain of Trichoderma longibrachiatum HL167 Is Effective in Alleviating Salt Stress, Promoting Plant Growth, and Managing Fusarium Wilt Disease in Cowpea. Journal of Fungi, 9(3), 304. https://doi.org/10.3390/jof9030304 DOI: https://doi.org/10.3390/jof9030304

Madala, N., & Nutakki, M. K. (2020). Hot Pepper – History- Health and Dietary Benefits & Production. International Journal of Current Microbiology and Applied Sciences, 9(4), 2532–2538. https://doi.org/10.20546/ijcmas.2020.904.303 DOI: https://doi.org/10.20546/ijcmas.2020.904.303

Moreira-Cantos, E. A., & Mieles-Giler, J. W. (2025). Evaluación de impacto ambiental en los atractivos turísticos Paseo Lúdico del cantón Montecristi, Manabí, Ecuador. Revista Científica Ciencia Y Método, 3(3), 229-246. https://doi.org/10.55813/gaea/rcym/v3/n3/72 DOI: https://doi.org/10.55813/gaea/rcym/v3/n3/72

Munzón, M., Holguin, B., & Chávez, G. (2022). Agronomic response of the pepper (Capsicum annuumL) crop to two irrigation conditions. Agroindustrial Science, 12(1), 73–80. https://doi.org/10.17268/agroind.sci.2022.01.09 DOI: https://doi.org/10.17268/agroind.sci.2022.01.09

Oljira, A. M., Hussain, T., Waghmode, T. R., Zhao, H., Sun, H., Liu, X., Wang, X., & Liu, B. (2020). Trichoderma Enhances Net Photosynthesis, Water Use Efficiency, and Growth of Wheat (Triticum aestivum L.) under Salt Stress. Microorganisms, 8(10), 1565. https://doi.org/10.3390/microorganisms8101565 DOI: https://doi.org/10.3390/microorganisms8101565

Quintana Blanco, W. A., Pinzón Sandoval, E. H., & Torres, D. F. (2016). Evaluación del crecimiento de fríjol (Phaseolus vulgaris L.) cv. Ica Cerinza, bajo estrés salino. Revista U.D.C.A Actualidad & Divulgación Científica, 19(1). https://doi.org/10.31910/rudca.v19.n1.2016.113 DOI: https://doi.org/10.31910/rudca.v19.n1.2016.113

Romero Delgado, W. F., Edison Jaramillo Aguilar, E., & Luna-Romero, Á. E. (2022). Evaluación morfológica del pimiento (capsicum annun l.) bajo diferentes coberturas vegetales muertas, Ecuador. Científica Agroecosistemas, 10(3), 134–142.

Sanchez Lopez, D. B., Pérez Pazos, J. V., & David Hinestroza, H. A. (2016). Efecto de las PGPB sobre el crecimiento Pennisetum clandestinum bajo condiciones de estrés salino. Revista Colombiana de Biotecnología, 18(1). https://doi.org/10.15446/rev.colomb.biote.v18n1.50413 DOI: https://doi.org/10.15446/rev.colomb.biote.v18n1.50413

Sánchez-Montesinos, B., Diánez, F., Moreno-Gavira, A., Gea, F. J., & Santos, M. (2019). Plant Growth Promotion and Biocontrol of Pythium ultimum by Saline Tolerant Trichoderma Isolates under Salinity Stress. International Journal of Environmental Research and Public Health, 16(11), 2053. https://doi.org/10.3390/ijerph16112053 DOI: https://doi.org/10.3390/ijerph16112053

Umber, M., Sultana, R., Nasir, F., Mubashar, R., & Sehar, R. (2021). Influence of Trichoderma harzianum- seed Coating on the Biochemical Characteristics of Wheat (Triticum aestivum L.) Under Salt Stress. Pakistan Journal of Analytical & Environmental Chemistry, 22(2), 288–296. https://doi.org/10.21743/pjaec/2021.12.08 DOI: https://doi.org/10.21743/pjaec/2021.12.08

Yao, X., Guo, H., Zhang, K., Zhao, M., Ruan, J., & Chen, J. (2023). Trichoderma and its role in biological control of plant fungal and nematode disease. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1160551 DOI: https://doi.org/10.3389/fmicb.2023.1160551

Zhang, C., Wang, W., Hu, Y., Peng, Z., Ren, S., Xue, M., Liu, Z., Hou, J., Xing, M., & Liu, T. (2022). A novel salt-tolerant strain Trichoderma atroviride HN082102.1 isolated from marine habitat alleviates salt stress and diminishes cucumber root rot caused by Fusarium oxysporum. BMC Microbiology, 22(1), 67. https://doi.org/10.1186/s12866-022-02479-0 DOI: https://doi.org/10.1186/s12866-022-02479-0

Zin, N. A., & Badaluddin, N. A. (2020). Biological functions of Trichoderma spp. for agriculture applications. Annals of Agricultural Sciences, 65(2), 168–178. https://doi.org/10.1016/j.aoas.2020.09.003 DOI: https://doi.org/10.1016/j.aoas.2020.09.003