Passive natural ventilation strategies in hot and humid climates

Main Article Content

Arturo Omar Álvarez-Laborde
César René Vélez-Guerrero
Glenn Walter Vinueza-Mendoza
Gabriel Andrés Chévez-Franco

Abstract

In hot and humid climates, the growing demand for cooling has reinforced dependence on air conditioning; this paper summarizes passive natural ventilation strategies to reduce energy consumption and improve indoor air quality. An exploratory literature review was conducted using a search and screening protocol in academic sources, including peer-reviewed studies in tropical areas with evidence from measurements, simulations, or aerodynamic tests, and a thematic synthesis by families of solutions. The results identify cross ventilation as the most effective regime for achieving high renewal rates and perceptible indoor velocities when porosity, inflow-outflow balance, orientation, floor depth, and internal trajectories minimize losses; in contrast, single-sided ventilation performs more erratically and is heavily dependent on turbulence and urban obstructions. In scenarios of extreme heat or degraded outdoor air, exclusively natural ventilation is often insufficient, so combinations with passive capture or extraction devices and very low-consumption supports, operated contextually, are proposed. It is concluded that success depends on multiscale morphological decisions and adaptive operation based on air movement.

Downloads

Download data is not yet available.

Article Details

Section

Artículos

How to Cite

Álvarez-Laborde, A. O., Vélez-Guerrero, C. R., Vinueza-Mendoza, G. W., & Chévez-Franco, G. A. (2026). Passive natural ventilation strategies in hot and humid climates. Scientific Journal Science and Method, 4(1), 320-331. https://doi.org/10.55813/gaea/rcym/v4/n1/153

References

Aflaki, A., Mahyuddin, N., Al-Cheikh Mahmoud, Z., & Baharum, M. R. (2015). A review on natural ventilation applications through building façade components and ventilation openings in tropical climates. Energy and Buildings, 101, 153–162. https://doi.org/10.1016/j.enbuild.2015.04.033 DOI: https://doi.org/10.1016/j.enbuild.2015.04.033

Ahmed, T., Kumar, P., & Mottet, L. (2021). Natural ventilation in warm climates: The challenges of thermal comfort, heatwave resilience and indoor air quality. Renewable and Sustainable Energy Reviews, 138, 110669. https://doi.org/10.1016/j.rser.2020.110669 DOI: https://doi.org/10.1016/j.rser.2020.110669

Barberán-Zambrano, G. S., & Guerrero-Calero, J. M. (2025). Análisis de susceptibilidad y vulnerabilidad a deslizamientos en la comunidad Naranjal de la parroquia Abdón Calderón, Portoviejo. Revista Científica Zambos, 4(2), 118-134. https://doi.org/10.69484/rcz/v4/n2/111 DOI: https://doi.org/10.69484/rcz/v4/n2/111

Gaibor-Garófalo, A. M., & Paucar-Camacho, J. A. (2025). Estrategias para el fortalecimiento de la gestión de riesgos de desastres en el uso de suelo del área urbana de la parroquia Salinas, cantón Guaranda. Revista Científica Zambos, 4(2), 71-86. https://doi.org/10.69484/rcz/v4/n2/117 DOI: https://doi.org/10.69484/rcz/v4/n2/117

Jiang, Z., Kobayashi, T., Yamanaka, T., & Sandberg, M. (2023). A literature review of cross ventilation in buildings. Energy and Buildings, 291, 113143. https://doi.org/10.1016/j.enbuild.2023.113143 DOI: https://doi.org/10.1016/j.enbuild.2023.113143

Jing, Y., Zhong, H.-Y., Wang, W.-W., He, Y., Zhao, F.-Y., & Li, Y. (2021). Quantitative city ventilation evaluation for urban canopy under heat island circulation without geostrophic winds: Multi-scale CFD model and parametric investigations. Building and Environment, 196, 107793. https://doi.org/10.1016/j.buildenv.2021.107793 DOI: https://doi.org/10.1016/j.buildenv.2021.107793

Lipczynska, A., Schiavon, S., & Graham, L. T. (2018). Thermal comfort and self-reported productivity in an office with ceiling fans in the tropics. Building and Environment, 135, 202–212. https://doi.org/10.1016/j.buildenv.2018.03.013 DOI: https://doi.org/10.1016/j.buildenv.2018.03.013

Lizarraga-Aguirre, H. R. (2024). Evaluación de materiales sostenibles en la construcción de pavimentos urbano. Revista Científica Ciencia Y Método, 2(1), 41-54. https://doi.org/10.55813/gaea/rcym/v2/n1/30 DOI: https://doi.org/10.55813/gaea/rcym/v2/n1/30

Nicol, F. (2004). Adaptive thermal comfort standards in the hot–humid tropics. Energy and Buildings, 36(7), 628–637. https://doi.org/10.1016/j.enbuild.2004.01.016 DOI: https://doi.org/10.1016/j.enbuild.2004.01.016

Omrani, S., Garcia-Hansen, V., Capra, B., & Drogemuller, R. (2017). Natural ventilation in multi-storey buildings: Design process and review of evaluation tools. Building and Environment, 116, 182–194. https://doi.org/10.1016/j.buildenv.2017.02.012 DOI: https://doi.org/10.1016/j.buildenv.2017.02.012

Palacios-López, L. A., Pinargote-Bravo, V. J., Cárdenas-Lituma, M. G., & Solórzano-Cedeño, A. L. (2025). Análisis correlacional de vulnerabilidad ante deslizamientos en el barrio San José de Montecristi. Journal of Economic and Social Science Research, 5(2), 16-33. https://doi.org/10.55813/gaea/jessr/v5/n2/186 DOI: https://doi.org/10.55813/gaea/jessr/v5/n2/186

Pan, Y., Zhong, W., Zheng, X., Xu, H., & Zhang, T. (2024). Natural ventilation in vernacular architecture: A systematic review of bioclimatic ventilation design and its performance evaluation. Building and Environment, 111317. https://doi.org/10.1016/j.buildenv.2024.111317 DOI: https://doi.org/10.1016/j.buildenv.2024.111317

Rivadeneira-Moreira, J. C. (2024). Implementación de gemelos digitales probabilísticos en el monitoreo de infraestructuras geotécnicas. Revista Científica Ciencia Y Método, 2(1), 27-40. https://doi.org/10.55813/gaea/rcym/v2/n1/29 DOI: https://doi.org/10.55813/gaea/rcym/v2/n1/29

Sakiyama, N. R. M., Carlo, J. C., Frick, J., & Garrecht, H. (2020). Perspectives of naturally ventilated buildings: A review. Renewable and Sustainable Energy Reviews, 130, 109933. https://doi.org/10.1016/j.rser.2020.109933 DOI: https://doi.org/10.1016/j.rser.2020.109933

Stasi, R., Ruggiero, F., & Berardi, U. (2023). Influence of cross-ventilation cooling potential on thermal comfort in high-rise buildings in a hot and humid climate. Building and Environment, 242, 111096. https://doi.org/10.1016/j.buildenv.2023.111096 DOI: https://doi.org/10.1016/j.buildenv.2023.111096

Toe, D. H. C., & Kubota, T. (2013). Development of an adaptive thermal comfort equation for naturally ventilated buildings in hot–humid climates using ASHRAE RP-884 database. Frontiers of Architectural Research, 2(4), 278–291. https://doi.org/10.1016/j.foar.2013.06.003 DOI: https://doi.org/10.1016/j.foar.2013.06.003

Zhang, H., Yang, D., Tam, V. W. Y., Tao, Y., Zhang, G., Setunge, S., & Shi, L. (2021). A critical review of combined natural ventilation techniques in sustainable buildings. Renewable and Sustainable Energy Reviews, 141, 110795. https://doi.org/10.1016/j.rser.2021.110795 DOI: https://doi.org/10.1016/j.rser.2021.110795

Zhong, H.-Y., Sun, Y., Shang, J., Qian, F.-P., Zhao, F.-Y., Kikumoto, H., Jimenez-Bescos, C., & Liu, X. (2022). Single-sided natural ventilation in buildings: A critical literature review. Building and Environment, 212, 108797. https://doi.org/10.1016/j.buildenv.2022.108797 DOI: https://doi.org/10.1016/j.buildenv.2022.108797