Implementation of probabilistic digital twins in the monitoring of geotechnical infrastructures
Main Article Content
Abstract
The increasing complexity of geotechnical infrastructures and their exposure to dynamic and variable conditions has motivated the implementation of probabilistic digital twins as a tool for advanced monitoring. This study adopts a systematic literature review methodology, examining recent academic articles that address the development and application of these models in geotechnical contexts. Methodological advances such as the integration of Bayesian inference, stochastic simulations and machine learning were analyzed, which allow representing and updating models in real time, incorporating the uncertainty inherent to ground behavior. Likewise, applications in dams, slopes and tunnels were documented, showing how these systems improve failure prediction and optimize decision making. However, technical and economic challenges related to instrumentation, geological variability, model validation and implementation costs remain. The study concludes that, despite these limitations, probabilistic digital twins represent a significant evolution in structural management, with high potential for adoption in modern civil engineering.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
References
Aguado, M. (2023). Caracterización geológica y aplicaciones de las arenas silíceas en infraestructuras costeras: Incertidumbres en los modelos de predicción [Tesis doctoral, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid]. https://doi.org/10.20868/UPM.thesis.69762 DOI: https://doi.org/10.20868/UPM.thesis.69762
Beltrán-Jimenez, S. S., Gómez-Reina, M. Ángel, Monsalve-Estrada, N. Y., Ospina-Ladino, M. C., & López-Muñoz, L. G. (2023). Optimización del Overrun (aireado), del rendimiento, de los sólidos solubles y los costos de un helado mediante el diseño de mezclas. Journal of Economic and Social Science Research, 3(4), 68–83. https://doi.org/10.55813/gaea/jessr/v3/n4/81 DOI: https://doi.org/10.55813/gaea/jessr/v3/n4/81
Crespo, M., Gallipoli, D., & Tasiopoulou, P. (2021). Monitoring landslides with digital twin frameworks: Application to the Lyon–Turin railway. Engineering Geology, 289, 106218.
Cuervo Reyes, M. H. (2020). Tecnologías digitales de la construcción [Tesis de maestría, Universidad de los Andes]. Repositorio Séneca. http://hdl.handle.net/1992/5096
Facio Medina, A. (2020). Algoritmos de optimización para la provisión de máquinas virtuales en la nube elástica de Amazon para la ejecución de gemelos digitales de procesos industriales [Tesis de maestría, Centro de Investigación Científica y de Educación Superior de Ensenada, CICESE]. Repositorio CICESE. http://cicese.repositorioinstitucional.mx/jspui/handle/1007/3347
Fatás Casanovas, O. (2024). Gemelo digital de una viga biapoyada para la monitorización del daño a fatiga [Trabajo de fin de grado, Escola d’Enginyeria de Barcelona Est, Universitat Politècnica de Catalunya]. UPCommons. http://hdl.handle.net/2117/405085
Giuffrè, T., Granà, A., & Marino, S. (2020). A digital twin decision support system for bridge management based on safety, condition and risk assessment. Structure and Infrastructure Engineering, 17(3), 429–447.
González Canales, J. A. (2023). Relación entre la probabilidad de existencia de permafrost y la susceptibilidad de remociones en masa en la zona alta de la cuenca del río Huasco, Región de Atacama [Tesis de pregrado, Universidad de Chile]. Repositorio Académico Universidad de Chile. https://repositorio.uchile.cl/handle/2250/194406
Gras, J. P., Arroyo, M., Gens, A., & Soga, K. (2023). A framework for the development of digital twins in geotechnical engineering. Computers and Geotechnics, 157, 105366.
Johansen, T., Ødegård, M., & Hjelseth, E. (2022). Real-time digital twins in tunneling: Integrating probabilistic modeling and sensor feedback. Tunnelling and Underground Space Technology, 130, 105016.
Lagos Sepúlveda, C. S. (2021). Análisis de riesgo en el proceso constructivo de túneles construidos con TBM [Tesis de pregrado, Universidad de Chile]. Repositorio Académico Universidad de Chile. https://repositorio.uchile.cl/handle/2250/181329
Liu, Z., Wu, Z., Zhang, J., & Wang, Y. (2021). Challenges and strategies of sensor deployment in geotechnical digital twin systems. Sensors, 21(12), 4024.
Sun, H., Zhang, D., & Zhou, C. (2022). Probabilistic digital twins for geotechnical systems: Framework, challenges and opportunities. Computers and Geotechnics, 144, 104648.
Toala Arias , F. J., Maldonado Zuñiga , K. ., Toala Zambrano , M. M. ., & Álava Cruzatty , J. E. . (2022). Gemelos digitales en la industria. Revista Científica Arbitrada Multidisciplinaria PENTACIENCIAS, 4(1), 75–83. Recuperado a partir de https://www.editorialalema.org/index.php/pentaciencias/article/view/29
Wang, X., Kim, Y., & Zhang, C. (2021). Real-time monitoring and probabilistic assessment of geotechnical structures using digital twins. Journal of Infrastructure Systems, 27(3), 04021030. DOI: https://doi.org/10.1061/(ASCE)IS.1943-555X.0000643
Wu, C., Tang, C., & Zhang, D. (2023). Bayesian-based digital twin for dam safety monitoring: A case study of Shuibuya dam. Computers and Geotechnics, 156, 105354.
Zapata-Mendoza, P. C. O., Villalta-Arellano, S. R., Berrios-Zevallos, A. A., Atto-Coba, S. R., & Berrios-Tauccaya, O. J. (2023). Sostenibilidad ambiental en el diseño arquitectónico de plantas procesadoras de alimentos. Editorial Grupo AEA. https://doi.org/10.55813/egaea.l.2022.59 DOI: https://doi.org/10.55813/egaea.l.2022.59
Zhang, L., Li, J., & Chen, Q. (2023). Application of digital twin technology in geotechnical engineering: A comprehensive review. Automation in Construction, 149, 104790.