Physical and mechanical properties of Ochroma pyramidale (Cav. ex Lam.) Urb. (balsa) wood growing in three Ecuadorian locations
Main Article Content
Abstract
Ecuador is currently the first Ochroma pyramidale wood producer in the world, increasing the number of plantations and wood processing industries. In this study, the objective was to evaluate the physical and mechanical properties of O. pyramidale wood growing in the center of the coast and north of the Ecuadorian Amazon. For this, the ages and location of the samples within the tree segment (bottom, centre and apex) were considered. The guidelines of the ASTM D143 standard were considered for the preparation and sizing of the test pieces, as well as for the execution of the tests. An ANOVA was used on a completely Random Design, and Tukey's test to determine significant differences. According to the results obtained, and taking into consideration the uses that are given to O. pyramidale wood the three-year-old woods from Sucumbíos and Orellana provinces presents better technological properties than the three and four-year-old woods from Los Ríos, which suggests that wood in the eastern zone can be harvested earlier than wood in the coastal zone, without affecting the technological properties of the O. pyramidale wood.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
References
ASTM D 143-09. (2009). Standard Test Methods for Small Clear Specimens of Timber.
Barnett, J. & Bonham, V. (2004). Cellulose microfibril angle in the cell wall of wood fibres. Biological Review, 79(2), 461-472. https://doi.org/10.1017/S1464793103006377 DOI: https://doi.org/10.1017/S1464793103006377
Bhekti, Y., Ishiguri, F., Aiso, H., Ohshima, J. & Yokota, S. (2017). Wood properties of 7-year-old balsa (Ochroma pyramidale) planted in East Java. International Wood Products Journal, 8(4), 227-232. https://doi.org/10.1080/20426445.2017.1394560 DOI: https://doi.org/10.1080/20426445.2017.1394560
Bonet, X., Coello, J. & Andrade, H. (2009). Overview of balsa wood as a core material in sandwich construction PRFV. BALSEUROP ECUATO ESPAÑOLA, SL. (in Spanish).
Bootle, K. (1983). Wood in Australia. Types, properties and uses. McGraw-Hill Book Company.
Borrega, M., Ahvenainen, P., Serimaa, R. & Gibson, L. (2015). Composition and structure of balsa (Ochroma pyramidale) wood. Wood Science and Technology, 49(2), 403-420. https://doi.org/10.1007/s00226-015-0700-5 DOI: https://doi.org/10.1007/s00226-015-0700-5
Cave, I. (1968). The anisotropic elasticity of the plant cell wall. Wood Science and Technology, 2(4), 268-278. https://doi.org/10.1007/BF00350273 DOI: https://doi.org/10.1007/BF00350273
CIRAD (Centre de Coopération Internationale en Recherche Agronomique pour le Développement). (2012). Balsa. TROPIX 7. Fichiers Complementaires.
Da Silva, A. & Kyriakides S. (2007). Compressive response and failure of balsa wood. International Journal of Solids and Structures, 44(25-26), 8685-8717. https://doi.org/10.1016/j.ijsolstr.2007.07.003 DOI: https://doi.org/10.1016/j.ijsolstr.2007.07.003
Diaz-vaz, J. & Cuevas, H. (1986). Mechanics of wood. Teacher publication N° 23. Faculty of Forest Sciences. Austral University of Chile. (in Spanish).
Donaldson, L. (2008). Microfibril angle: measurement, variation and relationships - a review. IAWA Journal, 29(4), 345-386. https://doi.org/10.1163/22941932-90000192 DOI: https://doi.org/10.1163/22941932-90000192
Eddowes, P. (2005). Solomon Islands timber. Solomon Islands Forestry Management Project (SIFMP II). AusAID. https://www.fiapng.com/Solomon_Island_Timber_Species.pdf
Fletcher, M. (1949). Balsa Industry of Ecuador. Economic Geography, 25(1), 47-54. DOI: https://doi.org/10.2307/141085
González, B., Cervantes, X., Torres, E., Sánchez, C. & Simba, L. (2010). Characterization of the balsa cultivation (Ochroma pyramidale) in the The Rivers province of Ecuador (Caracterización del cultivo de balsa (Ochroma pyramidale) en la provincia de Los Ríos – Ecuador). Ciencia y Tecnología, 3(2), 7-11. https://doi.org/10.18779/cyt.v3i2.94 DOI: https://doi.org/10.18779/cyt.v3i2.94
Goodrich, T., Nawaz, N., Feih, S., Lattimer, B. & Mouritz, A. (2010). High-temperature mechanical properties and thermal recovery of balsa wood. Journal of Wood Science, 56(6), 437-443. https://doi.org/10.1007/s10086-010-1125-2 DOI: https://doi.org/10.1007/s10086-010-1125-2
Hocker, H. (1984). Introduction to Forest Biology. AGT Editor. (in Spanish).
Kollmann, F. & Côté, W. (1968). Principles of wood science and technology. Volume I: Solid Wood. Springer – Verlag. DOI: https://doi.org/10.1007/978-3-642-87928-9
Kotlarewski, N., Belleville, B., Gusamo, B. and Ozarska, B. (2016). Mechanical properties of Papua New Guinea balsa wood. European Journal of Wood and Wood Products, 74(1), 83-89. https://doi.org/10.1007/s00107-015-0983-0 DOI: https://doi.org/10.1007/s00107-015-0983-0
Moore, J. (2011). Wood properties and uses of Sitka spruce in Britain. Forestry Commission Research Report. https://cdn.forestresearch.gov.uk/2011/03/fcrp015.pdf
Ortiz, M. (2018). Characterization of the balsa wood density (Ochroma pyramidale) in two edaphoclimatic zones of the Ecuadorian coast [Thesis in Environment and Development Engineering, Zamorano Pan-American School of Agriculture]. (in Spanish). https://bdigital.zamorano.edu/handle/11036/6383
Pérez, V. (1983). Handbook of physical and mechanical properties of Chilean woods. National Forest Corporation. (in Spanish).
Rozenberg, P. and Cahalan, C. (1997). Spruce and wood quality: genetic aspects (a review). Silvae Genetica, 46(5), 270-279.
Ruwanpathiranal, N., Amarasekera, H., & de Silva, M. (1996). Variation of Pinus caribaea wood density with height in tree and distance from pith, in different site classes. In: H. Amarasekera, D. Ranasingile & W. Finlayson. (Eds.). Proceedings of the Second Annual Forestry Symposium. Management and Sustainable Utilization of Forest Resources (pp. 49-57). https://doi.org/10.31357/fesympo.v0i0.1200 DOI: https://doi.org/10.31357/fesympo.v0i0.1200
Senalik, C. & Farber, B. (2021). Mechanical properties of wood. Chapter 5. In: Ross, R. (Ed). Wood handbook – Wood as an engineering material. (pp. 5-1; 5-46). Forest Products Laboratory. United States Department of Agriculture. Forest Service. https://www.fpl.fs.usda.gov/documnts/fplgtr/fplgtr282/chapter_05_fpl_gtr282.pdf
Shishkina, O., Lomov, S., Verpoest, I. & Gorbatikh, L. (2014). Structure–property relations for balsa wood as a function of density: modelling approach. Archive of Applied Mechanics, 84 (6), 789-805. https://doi.org/10.1007/s00419-014-0833-2 DOI: https://doi.org/10.1007/s00419-014-0833-2
Shmulsky, R. & Jones, P. (2011). Forest Products & Wood Science – an introduction. Sixth edition. Wiley-Blackwell. DOI: https://doi.org/10.1002/9780470960035
Tsoumis, G. (1991). Science and technology of wood: structure, properties, utilization. Van Nostrand Reinhold.
Vural, M. & Ravichandran, G. (2003). Microstructural aspects and modeling of failure in naturally occurring porous composites. Mechanics of Materials, 35(3-6), 523-536. https://doi.org/10.1016/S0167-6636(02)00268-5 DOI: https://doi.org/10.1016/S0167-6636(02)00268-5
Wiselius, S. (1998). Ochroma Sw. In: M. Sosef, L. Hong & S. Prawirohatmodjo. (Eds.). Plant resources of South-East Asia No 5(3). Timber trees: lesser-known timbers. Backhuys Publishers.
Zobel, B. & van Biujtenen, J. (1989). The effect of provenance variation and exotic plantations on Wood properties. Chapter 2. In: Wood variation – Its causes control. Springer – Verlag. DOI: https://doi.org/10.1007/978-3-642-74069-5_2