Implementation of soft robotics in automated assembly processes
Main Article Content
Abstract
The automation of assembly processes has found in soft robotics a disruptive technological alternative to the limitations of traditional robots, which are ineffective in tasks that require adaptability, delicate handling or safe interaction with humans. This article presents a systematic review of scientific literature between 2010 and 2024, using databases such as Scopus and Web of Science, with the aim of analyzing the state of the art, applications, limitations and potential of soft robotics in automated assembly processes. Four main principles are identified: use of elastomers, pneumatic or hydraulic actuation, adaptability to unstructured environments and nonlinear dynamic control. Notable applications include electronic component assembly, collaborative robotics, sensitive food handling, and medical device assembly. The findings evidence significant improvement in accuracy, safety and efficiency, especially in contexts that demand high sensitivity and customization. However, technical challenges related to modeling, sensory integration and standardization remain. It is concluded that soft robotics has a high potential to redefine industrial automation in the Industry 4.0 era, provided that its integration with emerging technologies is consolidated.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
References
Bolaños Linares, R. (2019). Es tiempo de robótica en la arquitectura. Academia XXII, 10(20), 121–151. https://doi.org/10.22201/fa.2007252Xp.2019.20.72342 DOI: https://doi.org/10.22201/fa.2007252Xp.2019.20.72342
Calisti, M., Giorelli, M., Levy, G., & Laschi, C. (2017). Soft robotics applications to food handling. Robotics and Autonomous Systems, 93, 116–123.
Celi Párraga, R. J., Boné Andrade, M. F., & Mora Olivero, A. P. (2023). Programación Web del Frontend al Backend. Editorial Grupo AEA. https://doi.org/10.55813/egaea.l.2022.18 DOI: https://doi.org/10.55813/egaea.l.2022.18
Celi-Párraga, R. J., Boné-Andrade, M. F., Mora-Olivero, A. P., & Sarmiento-Saavedra, J. C. (2023). Ingeniería del Software I: Requerimientos y Modelado del Software. Editorial Grupo AEA. https://doi.org/10.55813/egaea.l.2022.21 DOI: https://doi.org/10.55813/egaea.l.2022.21
Celi-Párraga, R. J., Mora-Olivero, A. P., Boné-Andrade, M. F., & Sarmiento-Saavedra, J. C. (2023). Ingeniería del Software II: Implementación, Pruebas y Mantenimiento. Editorial Grupo AEA. https://doi.org/10.55813/egaea.l.2022.20
Celi-Párraga, R. J., Mora-Olivero, A. P., Boné-Andrade, M. F., & Sarmiento-Saavedra, J. C. (2023). Ingeniería del Software II: Implementación, Pruebas y Mantenimiento. Editorial Grupo AEA. https://doi.org/10.55813/egaea.l.2022.23 DOI: https://doi.org/10.55813/egaea.l.2022.20
Cianchetti, M., Laschi, C., Menciassi, A., & Dario, P. (2018). Biomedical applications of soft robotics. Nature Reviews Materials, 3(6), 143–153. https://doi.org/10.1038/s41578-018-0022-y DOI: https://doi.org/10.1038/s41578-018-0022-y
Galarza-Sánchez, P. C. (2023). Adopción de Tecnologías de la Información en las PYMEs Ecuatorianas: Factores y Desafíos. Revista Científica Zambos, 2(1), 21-40. https://doi.org/10.69484/rcz/v2/n1/36 DOI: https://doi.org/10.69484/rcz/v2/n1/36
Galarza-Sánchez, P. C., Agualongo-Yazuma, J. C., & Jumbo-Martínez, M. N. (2022). Innovación tecnológica en la industria de restaurantes del Cantón Pedro Vicente Maldonado. Journal of Economic and Social Science Research, 2(1), 31–43. https://doi.org/10.55813/gaea/jessr/v2/n1/45 DOI: https://doi.org/10.55813/gaea/jessr/v2/n1/45
Ilievski, F., Mazzeo, A. D., Shepherd, R. F., Chen, X., & Whitesides, G. M. (2011). Soft robotics for chemists. Angewandte Chemie International Edition, 50(8), 1890–1895. https://doi.org/10.1002/anie.201006464 DOI: https://doi.org/10.1002/anie.201006464
Jaramillo-Chuqui, I. F., & Villarroel-Molina, R. (2023). Elementos básicos de Análisis Inteligente de Datos. Editorial Grupo AEA. https://doi.org/10.55813/egaea.l.2022.65 DOI: https://doi.org/10.55813/egaea.l.2022.65
Katzschmann, R. K., DelPreto, J., MacCurdy, R., & Rus, D. (2018). Exploration of underwater life with an acoustically controlled soft robotic fish. Science Robotics, 3(16), eaar3449. https://doi.org/10.1126/scirobotics.aar3449 DOI: https://doi.org/10.1126/scirobotics.aar3449
Kim, S., Laschi, C., & Trimmer, B. (2013). Soft robotics: A bioinspired evolution in robotics. Trends in Biotechnology, 31(5), 287–294. https://doi.org/10.1016/j.tibtech.2013.03.002 DOI: https://doi.org/10.1016/j.tibtech.2013.03.002
Laschi, C., Mazzolai, B., & Cianchetti, M. (2016). Soft robotics: Technologies and systems pushing the boundaries of robot abilities. Science Robotics, 1(1), eaah3690. https://doi.org/10.1126/scirobotics.aah3690 DOI: https://doi.org/10.1126/scirobotics.aah3690
Majidi, C. (2013). Soft robotics: A perspective—current trends and prospects for the future. Soft Robotics, 1(1), 5–11. https://doi.org/10.1089/soro.2013.0001 DOI: https://doi.org/10.1089/soro.2013.0001
Marchese, A. D., Katzschmann, R. K., & Rus, D. (2015). A recipe for soft fluidic elastomer robots. Soft Robotics, 2(1), 7–25. https://doi.org/10.1089/soro.2014.0022 DOI: https://doi.org/10.1089/soro.2014.0022
Picoy-Gonzales, J. A., Huarcaya-Taype, R., Contreras-Canto, O. H., & Omonte-Vilca, A. (2023). Fortalecimiento Metodológico de la Seguridad Informática en Posgrados: Análisis y Estrategias de Mejora. Editorial Grupo AEA. https://doi.org/10.55813/egaea.l.2022.56 DOI: https://doi.org/10.55813/egaea.l.2022.56
Picoy-Gonzales, J. A., Huarcaya-Taype, R., Contreras-Canto, O. H., Omonte-Vilca, A., Contreras-De La Cruz, C., & Gaspar-Quispe, J. C. (2023). Sabores Conectados: Transformando la Gastronomía a través de las Tecnologías de la Información y Comunicación. Editorial Grupo AEA. https://doi.org/10.55813/egaea.l.2022.58 DOI: https://doi.org/10.55813/egaea.l.2022.58
Polygerinos, P., Correll, N., Morin, S. A., Mosadegh, B., Onal, C. D., Petersen, K., ... & Walsh, C. J. (2017). Soft robotics: Review of fluid-driven intrinsically soft devices; manufacturing, sensing, control, and applications in human–robot interaction. Advanced Engineering Materials, 19(12), 1700016. https://doi.org/10.1002/adem.201700016 DOI: https://doi.org/10.1002/adem.201700016
Rus, D., & Tolley, M. T. (2015). Design, fabrication and control of soft robots. Nature, 521(7553), 467–475. https://doi.org/10.1038/nature14543 DOI: https://doi.org/10.1038/nature14543
Shepherd, R. F., Ilievski, F., Choi, W., Morin, S. A., Stokes, A. A., Mazzeo, A. D., ... & Whitesides, G. M. (2011). Multigait soft robot. Proceedings of the National Academy of Sciences, 108(51), 20400–20403. https://doi.org/10.1073/pnas.1116564108 DOI: https://doi.org/10.1073/pnas.1116564108
Shintake, J., Cacucciolo, V., Floreano, D., & Shea, H. (2018). Soft robotic grippers. Advanced Materials, 30(29), 1707035. https://doi.org/10.1002/adma.201707035 DOI: https://doi.org/10.1002/adma.201707035
Solano-Gutiérrez, G. A., Núñez-Freire, L. A., Mendoza-Loor, J. J., Choez-Calderón, C. J., & Montaño-Cabezas, L. J. (2023). Evolución del Computador: desde el ABC de su Arquitectura hasta la Construcción de una PC Gamer. Editorial Grupo AEA. https://doi.org/10.55813/egaea.l.2022.24 DOI: https://doi.org/10.55813/egaea.l.2022.24
Trivedi, D., Rahn, C. D., Kier, W. M., & Walker, I. D. (2008). Soft robotics: Biological inspiration, state of the art, and future research. Applied Bionics and Biomechanics, 5(3), 99–117. https://doi.org/10.1080/11762320802557865 DOI: https://doi.org/10.1155/2008/520417
Zhang, Y., Ren, S., Liu, Y., Sakao, T., & Huisingh, D. (2017). A framework for big data driven product lifecycle management. Journal of Cleaner Production, 219, 322–330. https://doi.org/10.1016/j.jclepro.2017.04.172 DOI: https://doi.org/10.1016/j.jclepro.2017.04.172