Efficiency of hydroponic growing systems in urban environments
Main Article Content
Abstract
This study systematically reviews the efficiency of hydroponic growing systems in urban environments in response to the current challenges of food security, water scarcity and urbanization. Through a critical analysis of scientific literature indexed in Scopus and Web of Science, key indicators such as efficient use of water and space, high productivity per unit area, and quality of the products obtained are identified. The capacity of hydroponics to reduce water consumption by up to 90% and to multiply production in reduced spaces through vertical cultivation is highlighted. However, significant limitations are also evident, such as high initial costs, energy consumption and the need for specialized technical knowledge. The review concludes that the success of urban hydroponics depends on an articulation between financing, training, regulatory frameworks and urban planning. This technology emerges as a viable strategy to transform urban food systems towards sustainable and resilient models.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
References
Al-Kodmany, K. (2018). The vertical farm: A review of developments and implications for the vertical city. Buildings, 8(2), 24. https://doi.org/10.3390/buildings8020024 DOI: https://doi.org/10.3390/buildings8020024
Barbosa, G. L., Gadelha, F. D. A., Kublik, N., Proctor, A., Reichelm, L., Weissinger, E., ... & Halden, R. U. (2015). Comparison of land, water, and energy requirements of lettuce grown using hydroponic vs. conventional agricultural methods. International Journal of Environmental Research and Public Health, 12(6), 6879–6891. https://doi.org/10.3390/ijerph120606879 DOI: https://doi.org/10.3390/ijerph120606879
Beacham, A. M., Vickers, L. H., & Monaghan, J. M. (2019). Vertical farming: a summary of approaches to growing skywards. The Journal of Horticultural Science and Biotechnology, 94(3), 277–283. https://doi.org/10.1080/14620316.2019.1574214 DOI: https://doi.org/10.1080/14620316.2019.1574214
Benke, K., & Tomkins, B. (2017). Future food-production systems: Vertical farming and controlled-environment agriculture. Sustainability: Science, Practice and Policy, 13(1), 13–26. https://doi.org/10.1080/15487733.2017.1394054 DOI: https://doi.org/10.1080/15487733.2017.1394054
Caicedo-Aldaz, J. C., & Herrera-Sánchez, D. J. (2022). El Rol de la Agroecología en el Desarrollo Rural Sostenible en Ecuador. Revista Científica Zambos, 1(2), 1-16. https://doi.org/10.69484/rcz/v1/n2/24 DOI: https://doi.org/10.69484/rcz/v1/n2/24
Despommier, D. (2010). The vertical farm: Feeding the world in the 21st century. Picador.
Goddek, S., Joyce, A., Kotzen, B., & Burnell, G. M. (Eds.). (2019). Aquaponics food production systems: Combined aquaculture and hydroponic production technologies for the future. Springer. https://doi.org/10.1007/978-3-030-15943-6 DOI: https://doi.org/10.1007/978-3-030-15943-6
Gruda, N. (2009). Do soilless culture systems have an influence on product quality of vegetables?. Journal of Applied Botany and Food Quality, 82, 141-147. https://doi.org/10.18452/9433
Guamán-Rivera, S. A. (2022). Desarrollo de Políticas Agrarias y su Influencia en los Pequeños Agricultores Ecuatorianos. Revista Científica Zambos, 1(3), 15-28. https://doi.org/10.69484/rcz/v1/n3/30 DOI: https://doi.org/10.69484/rcz/v1/n3/30
Guamán-Rivera, S. A., & Flores-Mancheno, C. I. (2023). Seguridad Alimentaria y Producción Agrícola Sostenible en Ecuador. Revista Científica Zambos, 2(1), 1-20. https://doi.org/10.69484/rcz/v2/n1/35 DOI: https://doi.org/10.69484/rcz/v2/n1/35
Herrera-Feijoo, R. J. (2024). Principales amenazas e iniciativas de conservación de la biodiversidad en Ecuador. Journal of Economic and Social Science Research, 4(1), 33–56. https://doi.org/10.55813/gaea/jessr/v4/n1/85 DOI: https://doi.org/10.55813/gaea/jessr/v4/n1/85
Jensen, M. H. (1997). Hydroponics worldwide. Acta Horticulturae, 578, 19–25. https://doi.org/10.17660/ActaHortic.1999.481.87 DOI: https://doi.org/10.17660/ActaHortic.1999.481.87
Kalantari, F., Mohd Tahir, O., Joni, R. A., & Fatemi, E. (2018). Opportunities and challenges in sustainability of vertical farming: A review. Journal of Landscape Ecology, 11(1), 35–60. DOI: https://doi.org/10.1515/jlecol-2017-0016
Kozai, T., Niu, G., & Takagaki, M. (Eds.). (2019). Plant factory: An indoor vertical farming system for efficient quality food production. Academic Press.
Resh, H. M. (2022). Hydroponic food production: A definitive guidebook for the advanced home gardener and the commercial hydroponic grower (7th ed.). CRC Press. https://doi.org/10.1201/9781003133254 DOI: https://doi.org/10.1201/9781003133254
Rojas, F. E., & Saavedra-Mera, K. A. . (2022). Diversificación de Cultivos y su Impacto Económico en las Fincas Ecuatorianas. Revista Científica Zambos, 1(1), 51-68. https://doi.org/10.69484/rcz/v1/n1/21 DOI: https://doi.org/10.69484/rcz/v1/n1/21
Romero Cedeño, K. A., & Cadme Arévalo, M. L. (2024). Uso de sistemas de aeronaves remotamente pilotadas (RPAS) en el monitoreo de plantaciones forestales. Editorial Grupo AEA. https://doi.org/10.55813/egaea.l.87 DOI: https://doi.org/10.55813/egaea.l.87
Saavedra-Mera, K. A., Casanova-Villalba, C. I., Escarabay Cadena, A. Y., & Pluas Pai, Y. E. (2022). Análisis económico frente a la PC (Phytophthora palmivora) de la Palma Africana en el sector agroindustrial. Caso de estudio La Fabril planta La Independencia período 2021. Código Científico Revista De Investigación, 3(3), 301–315. https://doi.org/10.55813/gaea/ccri/v3/n3/67 DOI: https://doi.org/10.55813/gaea/ccri/v3/n3/67
Sanye-Mengual, E., Cerón-Palma, I., Oliver-Solà, J., Montero, J. I., & Rieradevall, J. (2015). Integrating horticulture into cities: A guide for assessing the implementation potential of rooftop greenhouses. Journal of Urban Technology, 22(1), 87–111. https://doi.org/10.1080/10630732.2014.942095 DOI: https://doi.org/10.1080/10630732.2014.942095
Sanyé-Mengual, E., Oliver-Solà, J., Montero, J.I. et al. An environmental and economic life cycle assessment of rooftop greenhouse (RTG) implementation in Barcelona, Spain. Assessing new forms of urban agriculture from the greenhouse structure to the final product level. Int J Life Cycle Assess 20, 350–366 (2015). https://doi.org/10.1007/s11367-014-0836-9 DOI: https://doi.org/10.1007/s11367-014-0836-9
Specht, K., Siebert, R., Hartmann, I., Freisinger, U. B., Sawicka, M., Werner, A., ... & Dierich, A. (2013). Urban agriculture of the future: An overview of sustainability aspects of food production in and on buildings. Agriculture and Human Values, 31(1), 33–51. https://doi.org/10.1007/s10460-013-9448-4 DOI: https://doi.org/10.1007/s10460-013-9448-4
Touliatos, D., Dodd, I. C., & McAinsh, M. (2016). Vertical farming increases lettuce yield per unit area compared to conventional horizontal hydroponics. Food and Energy Security, 5(3), 184–191. https://doi.org/10.1002/fes3.83 DOI: https://doi.org/10.1002/fes3.83
United Nations. (2021). Transforming our world: The 2030 Agenda for Sustainable Development. https://sdgs.un.org/2030agenda
Vera Chang, J. F., Barzola Miranda, S. E., & Álvarez Aspiazu, A. A. (2024). Procesamiento y conservación de frutas y hortalizas. Editorial Grupo AEA. https://doi.org/10.55813/egaea.l.84 DOI: https://doi.org/10.55813/egaea.l.84