Use of quantum computation in the improvement of machine learning algorithms
Main Article Content
Abstract
This study explores the integration of quantum computing in the improvement of machine learning algorithms, highlighting its potential to overcome the computational limitations of classical methods in highly complex tasks. Through a systematic literature review with a qualitative approach, academic articles indexed between 2015 and 2023 were analyzed, identifying key advances in variational quantum algorithms, quantum support vector machines, and quantum neural networks. The findings reveal that, despite current technological constraints, these approaches show advantages in efficiency, representativeness and generalizability. Furthermore, the relevance of hybrid quantum-classical models as an intermediate solution is highlighted, by allowing a functional distribution between quantum and classical resources. The research concludes that this convergence represents a promising avenue for the development of advanced artificial intelligence, although challenges such as circuit optimization, noise mitigation and methodological standardization remain. The need to strengthen the technological and theoretical infrastructure to consolidate this line of computational innovation is emphasized.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
References
Abbas, A., Sutter, D., Zoufal, C., Lucchi, A., Figalli, A., & Woerner, S. (2021). The power of quantum neural networks. Nature Computational Science, 1(6), 403–409. https://doi.org/10.1038/s43588-021-00084-1 DOI: https://doi.org/10.1038/s43588-021-00084-1
Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J. C., Barends, R., ... & Martinis, J. M. (2019). Quantum supremacy using a programmable superconducting processor. Nature, 574(7779), 505–510. https://doi.org/10.1038/s41586-019-1666-5 DOI: https://doi.org/10.1038/s41586-019-1666-5
Beer, K., Bondarenko, D., Farrelly, T. et al. (2020). Training deep quantum neural networks. Nat Commun 11, 808. https://doi.org/10.1038/s41467-020-14454-2 DOI: https://doi.org/10.1038/s41467-020-14454-2
Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., & Lloyd, S. (2017). Quantum machine learning. Nature, 549(7671), 195–202. https://doi.org/10.1038/nature23474 DOI: https://doi.org/10.1038/nature23474
Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S. C., Endo, S., Fujii, K., ... & Coles, P. J. (2021). Variational quantum algorithms. Nature Reviews Physics, 3(9), 625–644. https://doi.org/10.1038/s42254-021-00348-9
Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S. C., Endo, S., Fujii, K., ... & Coles, P. J. (2021). Variational quantum algorithms. Nature Reviews Physics, 3(9), 625–644. https://doi.org/10.1038/s42254-021-00348-9 DOI: https://doi.org/10.1038/s42254-021-00348-9
Chen, M., Li, G., Lin, H., & Huang, J. (2021). Hybrid quantum-classical neural network for histopathological image classification. IEEE Access, 9, 146508–146517.
Cong, I., Choi, S., & Lukin, M. D. (2019). Quantum convolutional neural networks. Nature Physics, 15(12), 1273–1278. https://doi.org/10.1038/s41567-019-0648-8 DOI: https://doi.org/10.1038/s41567-019-0648-8
Farhi, E., & Neven, H. (2018). Classification with quantum neural networks on near term processors. arXiv preprint arXiv:1802.06002. https://doi.org/10.48550/arXiv.1802.06002
Gacon, J., Zoufal, C., & Woerner, S. (2021). Simultaneous perturbation stochastic approximation of the quantum natural gradient. Quantum, 5, 567. DOI: https://doi.org/10.22331/q-2021-10-20-567
Grant, E., Wossnig, L., Ostaszewski, M., & Benedetti, M. (2019). An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum, 3, 214. https://doi.org/10.22331/q-2019-12-09-214 DOI: https://doi.org/10.22331/q-2019-12-09-214
Havlíček, V., Córcoles, A. D., Temme, K., Harrow, A. W., Kandala, A., Chow, J. M., & Gambetta, J. M. (2019). Supervised learning with quantum-enhanced feature spaces. Nature, 567(7747), 209–212. https://doi.org/10.1038/s41586-019-0980-2 DOI: https://doi.org/10.1038/s41586-019-0980-2
Huang, H. Y., Broughton, M., Mohseni, M., Babbush, R., Boixo, S., Neven, H., & McClean, J. R. (2021). Power of data in quantum machine learning. Nature Communications, 12(1), 2631. https://doi.org/10.1038/s41467-021-22539-9 DOI: https://doi.org/10.1038/s41467-021-22539-9
McClean, J. R., Boixo, S., Smelyanskiy, V. N., Babbush, R., & Neven, H. (2018). Barren plateaus in quantum neural network training landscapes. Nature Communications, 9(1), 4812. https://doi.org/10.1038/s41467-018-07090-4 DOI: https://doi.org/10.1038/s41467-018-07090-4
Mitarai, K., Negoro, M., Kitagawa, M., & Fujii, K. (2018). Quantum circuit learning. Physical Review A, 98(3), 032309. https://doi.org/10.1103/PhysRevA.98.032309 DOI: https://doi.org/10.1103/PhysRevA.98.032309
Peruzzo, A., McClean, J., Shadbolt, P., Yung, M. H., Zhou, X. Q., Love, P. J., ... & O’Brien, J. L. (2014). A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 5, 4213. https://doi.org/10.1038/ncomms5213 DOI: https://doi.org/10.1038/ncomms5213
Preskill, J. (2018). Quantum Computing in the NISQ era and beyond. Quantum, 2, 79. https://doi.org/10.22331/q-2018-08-06-79 DOI: https://doi.org/10.22331/q-2018-08-06-79
Schuld, M., & Killoran, N. (2019). Quantum machine learning in feature Hilbert spaces. Physical Review Letters, 122(4), 040504. https://doi.org/10.1103/PhysRevLett.122.040504 DOI: https://doi.org/10.1103/PhysRevLett.122.040504
Stokes, J., Izaac, J., Killoran, N., & Carleo, G. (2020). Quantum natural gradient. Quantum, 4, 269. https://doi.org/10.22331/q-2020-05-25-269 DOI: https://doi.org/10.22331/q-2020-05-25-269
Strubell, E., Ganesh, A., & McCallum, A. (2019). Energy and policy considerations for deep learning in NLP. Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 3645–3650. https://doi.org/10.18653/v1/P19-1355 DOI: https://doi.org/10.18653/v1/P19-1355