Use of advanced data analytics for financial fraud detection
Main Article Content
Abstract
The study analyzes the use of advanced data analysis techniques as a central strategy in the detection of financial fraud, in a context marked by the increasing complexity of digital transactions and the sophistication of illicit mechanisms. Through an exploratory review of specialized literature published in high-impact databases, supervised learning methods, unsupervised learning methods and hybrid approaches were identified and compared, evaluating their effectiveness, limitations and implementation potential. The results show that supervised algorithms, such as neural networks and random forests, offer high accuracy when labeled data is available, while unsupervised techniques stand out for their ability to identify emerging frauds without prior information. The research concludes that the combination of both approaches using ensemble models constitutes a promising alternative, although it involves technical, operational and ethical challenges. The importance of articulating these methodologies with robust infrastructures and regulatory frameworks that guarantee transparency and explainability is highlighted.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
References
Albán-Molina, F. E., Salguero-Salguero, M. M., & Aimacaña-Chancusig, E. F. (2024). Modelo de finanzas personales para el manejo adecuado de ahorros de emprendimientos del GADP de Cotopaxi. Journal of Economic and Social Science Research, 4(1), 19–32. https://doi.org/10.55813/gaea/jessr/v4/n1/83 DOI: https://doi.org/10.55813/gaea/jessr/v4/n1/83
Almeida Blacio, J. H. (2024). El Rol de la Auditoría Forense en la Detección de Fraudes Corporativos. Revista Científica Zambos, 3(2), 74-96. https://doi.org/10.69484/rcz/v3/n2/18 DOI: https://doi.org/10.69484/rcz/v3/n2/18
Almeida-Blacio, J. H. (2024). Aplicación de Big Data y Técnicas Avanzadas en el Uso de Tecnología dentro de la Auditoría. Horizon Nexus Journal, 3(1), 55-68. https://doi.org/10.70881/hnj/v3/n1/49 DOI: https://doi.org/10.70881/hnj/v3/n1/49
Almenaba-Guerrero, Y. F., & Herrera-Sánchez, M. J. (2022). Diversidad e Inclusión en el Lugar de Trabajo: Prácticas en Ecuador Liderazgo y Cultura Organizacional. Revista Científica Zambos, 1(1), 69-85. https://doi.org/10.69484/rcz/v1/n1/22 DOI: https://doi.org/10.69484/rcz/v1/n1/22
Bahnsen, A. C., Aouada, D., Stojanovic, A., & Ottersten, B. (2016). Feature engineering strategies for credit card fraud detection. Expert Systems with Applications, 51, 134–142. https://doi.org/10.1016/j.eswa.2015.12.030 DOI: https://doi.org/10.1016/j.eswa.2015.12.030
Bolton, R. J., & Hand, D. J. (2002). Statistical fraud detection: A review. Statistical Science, 17(3), 235–255. https://doi.org/10.1214/ss/1042727940 DOI: https://doi.org/10.1214/ss/1042727940
Caicedo-Aldaz, J. C., Urgiles-Solorzano, A. S., & Moreira-Santamaria, M. J. (2022). Análisis del impacto económico de la reducción de precios del sector cacaotero, La Concordia 2019-2021. Journal of Economic and Social Science Research, 2(1), 1–17. https://doi.org/10.55813/gaea/jessr/v2/n1/43 DOI: https://doi.org/10.55813/gaea/jessr/v2/n1/43
Carcillo, F., Le Borgne, Y.-A., Caelen, O., Bontempi, G., & Sebban, M. (2021). Combining unsupervised and supervised learning in credit card fraud detection. Information Sciences, 557, 317–331. DOI: https://doi.org/10.1016/j.ins.2019.05.042
Dal Pozzolo, A., Caelen, O., Johnson, R. A., & Bontempi, G. (2018). Calibrating probability with undersampling for unbalanced classification. 2015 IEEE Symposium Series on Computational Intelligence, 159–166. https://doi.org/10.1109/SSCI.2015.33 DOI: https://doi.org/10.1109/SSCI.2015.33
Erazo-Luzuriaga, A. F. (2023). Uso de la minería de datos para la prevención de fraudes en el sector financiero. Horizon Nexus Journal, 1(1), 63-76. https://doi.org/10.70881/hnj/v1/n1/13 DOI: https://doi.org/10.70881/hnj/v1/n1/13
Guitérrez-Portela, F., Moreno-Hernández, J., Echeverry, B., & Jaramillo, A. (2019). USO DE LOS SISTEMAS INTELIGENTES PARA LA DETECCIÓN DE FRAUDES FINANCIEROS. Revista Sinergia, (6), 6-30. Recuperado a partir de http://sinergia.colmayor.edu.co/ojs/index.php/Revistasinergia/article/view/83
Herrera-Sánche, M. J., Casanova-Villalba, C. I., & Ruiz-López, S. E. (2023). Adaptación de las normativas de auditoría frente a los avances tecnológicos emergentes. Revista Científica Ciencia Y Método, 1(3), 1-15. https://doi.org/10.55813/gaea/rcym/v1/n3/16 DOI: https://doi.org/10.55813/gaea/rcym/v1/n3/16
Herrera-Sánchez, M. J., Navarrete-Zambrano, C. M., Núñez-Liberio, R. V., & López-Pérez, P. J. (2023). Elementos de un sistema de costeo para la producción de Sacha Inchi. Journal of Economic and Social Science Research, 3(1), 1–16. https://doi.org/10.55813/gaea/jessr/v3/n1/58 DOI: https://doi.org/10.55813/gaea/jessr/v3/n1/58
Hurtado-Guevara, R. F., & Casanova-Villalba, C. I. (2022). La Auditoría Forense como Herramienta para la Detección de Fraudes Financieros en Ecuador. Revista Científica Zambos, 1(1), 33-50. https://doi.org/10.69484/rcz/v1/n1/52 DOI: https://doi.org/10.69484/rcz/v1/n1/52
Jurgovsky, J., Granitzer, M., Ziegler, K., Calabretto, S., Portier, P.-E., He-Guelton, L., & Caelen, O. (2018). Sequence classification for credit-card fraud detection. Expert Systems with Applications, 100, 234–245. https://doi.org/10.1016/j.eswa.2018.01.037 DOI: https://doi.org/10.1016/j.eswa.2018.01.037
López-Pérez, P. J., Casanova-Villalba, C. I., & Muñoz-Intriago, K. R. . (2022). La Evolución de la Contabilidad Ambiental en Empresas Ecuatorianas. Revista Científica Zambos, 1(3), 44-59. https://doi.org/10.69484/rcz/v1/n3/32 DOI: https://doi.org/10.69484/rcz/v1/n3/32
Navarrete Zambrano, C. M., & Herrera-Sánchez, M. J. (2023). Impacto de la Contabilidad Ambiental en las Empresas del Sector Minero en Ecuador. Revista Científica Zambos, 2(2), 37-49. https://doi.org/10.69484/rcz/v2/n2/42 DOI: https://doi.org/10.69484/rcz/v2/n2/42
Ngai, E. W. T., Hu, Y., Wong, Y. H., Chen, Y., & Sun, X. (2011). The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. Decision Support Systems, 50(3), 559–569. https://doi.org/10.1016/j.dss.2010.08.006 DOI: https://doi.org/10.1016/j.dss.2010.08.006
Phua, C., Lee, V., Smith, K., & Gayler, R. (2010). A comprehensive survey of data mining-based fraud detection research. arXiv preprint arXiv:1009.6119. https://doi.org/10.48550/arXiv.1009.6119
Preciado Ramírez, J. D., & Bravo Bravo, I. F. (2021). Keynes y la crisis financiera de 1929, panorama de la Gran Depresión. Journal of Economic and Social Science Research, 1(1), 38–48. https://doi.org/10.55813/gaea/jessr/v1/n1/19 DOI: https://doi.org/10.55813/gaea/jessr/v1/n1/19
Roy, A., Sun, J., Mahoney, W., AlZain, M. A., & Kantardzic, M. (2018). Deep learning detecting fraud in credit card transactions. Proceedings of the 2018 IEEE International Conference on Big Data, 1846–1855. DOI: https://doi.org/10.1109/SIEDS.2018.8374722
West, J., & Bhattacharya, M. (2016). Intelligent financial fraud detection: A comprehensive review. Computers & Security, 57, 47–66. https://doi.org/10.1016/j.cose.2015.09.005 DOI: https://doi.org/10.1016/j.cose.2015.09.005
Whitrow, C., Hand, D. J., Juszczak, P., Weston, D., & Adams, N. M. (2009). Transaction aggregation as a strategy for credit card fraud detection. Data Mining and Knowledge Discovery, 18(1), 30–55. https://doi.org/10.1007/s10618-008-0116-z DOI: https://doi.org/10.1007/s10618-008-0116-z