Use of advanced data analytics for financial fraud detection

Main Article Content

Casanova-Villalba, César Iván
Casanova-Villalba, Luis Alberto

Abstract

The study analyzes the use of advanced data analysis techniques as a central strategy in the detection of financial fraud, in a context marked by the increasing complexity of digital transactions and the sophistication of illicit mechanisms. Through an exploratory review of specialized literature published in high-impact databases, supervised learning methods, unsupervised learning methods and hybrid approaches were identified and compared, evaluating their effectiveness, limitations and implementation potential. The results show that supervised algorithms, such as neural networks and random forests, offer high accuracy when labeled data is available, while unsupervised techniques stand out for their ability to identify emerging frauds without prior information. The research concludes that the combination of both approaches using ensemble models constitutes a promising alternative, although it involves technical, operational and ethical challenges. The importance of articulating these methodologies with robust infrastructures and regulatory frameworks that guarantee transparency and explainability is highlighted.

Downloads

Download data is not yet available.

Article Details

Section

Artículos

Author Biographies

Casanova-Villalba, César Iván, Universidad Técnica Luis Vargas Torres de Esmeraldas

Ecuadorian national, professional in Accounting, Finance, and Business Administration. Master's Degree in Business Administration with a specialization in Quality and Productivity Management (Pontificia Universidad Católica del Ecuador, Quito). CPA in Finance and Auditing (Universidad Tecnológica Equinoccial). International Diploma in International Financial Reporting Standards (IFRS) (Metropolitan University and the National Union of Accountants of Ecuador). Specialization in Corporate Finance (National Autonomous University of Mexico-UNAM). Accredited and Categorized Researcher by SENESCYT. Leader of the Google Educators Group of Santo Domingo. Certification in Administrative Assistance with Office Automation Management and Training of Trainers. His professional career began in accounting (2008-2009), as a statistician at the Ministry of Public Health (2012-2013), in the finance department of the National Transit Agency (2014-2017), in the administrative area at the National Electricity Corporation EP (2017-2018), Administrator at J&J Hardware Store (2019), Supervision and Control at the National Institute of Statistics and Censuses (2019). Professional experience in higher education, at the Shalom Higher Technical Institute in the city of Quito (2015-2018), Los Andes Higher Technological Institute in Santo Domingo (2018-present), at the Faculty of Administrative and Economic Sciences of the Luís Vargas Torres Technical University of Esmeraldas, Santo Domingo de Los Tsáchilas Campus (2020-present).

Casanova-Villalba, Luis Alberto, Universidad Técnica Luis Vargas Torres de Esmeraldas

Student at the Luis Vargas Torres Technical University in Esmeraldas, studying Business Administration

How to Cite

Casanova-Villalba, C. I., & Casanova-Villalba, L. A. (2024). Use of advanced data analytics for financial fraud detection. Scientific Journal Science and Method, 2(3), 1-12. https://doi.org/10.55813/gaea/rcym/v2/n3/44

References

Albán-Molina, F. E., Salguero-Salguero, M. M., & Aimacaña-Chancusig, E. F. (2024). Modelo de finanzas personales para el manejo adecuado de ahorros de emprendimientos del GADP de Cotopaxi. Journal of Economic and Social Science Research, 4(1), 19–32. https://doi.org/10.55813/gaea/jessr/v4/n1/83 DOI: https://doi.org/10.55813/gaea/jessr/v4/n1/83

Almeida Blacio, J. H. (2024). El Rol de la Auditoría Forense en la Detección de Fraudes Corporativos. Revista Científica Zambos, 3(2), 74-96. https://doi.org/10.69484/rcz/v3/n2/18 DOI: https://doi.org/10.69484/rcz/v3/n2/18

Almeida-Blacio, J. H. (2024). Aplicación de Big Data y Técnicas Avanzadas en el Uso de Tecnología dentro de la Auditoría. Horizon Nexus Journal, 3(1), 55-68. https://doi.org/10.70881/hnj/v3/n1/49 DOI: https://doi.org/10.70881/hnj/v3/n1/49

Almenaba-Guerrero, Y. F., & Herrera-Sánchez, M. J. (2022). Diversidad e Inclusión en el Lugar de Trabajo: Prácticas en Ecuador Liderazgo y Cultura Organizacional. Revista Científica Zambos, 1(1), 69-85. https://doi.org/10.69484/rcz/v1/n1/22 DOI: https://doi.org/10.69484/rcz/v1/n1/22

Bahnsen, A. C., Aouada, D., Stojanovic, A., & Ottersten, B. (2016). Feature engineering strategies for credit card fraud detection. Expert Systems with Applications, 51, 134–142. https://doi.org/10.1016/j.eswa.2015.12.030 DOI: https://doi.org/10.1016/j.eswa.2015.12.030

Bolton, R. J., & Hand, D. J. (2002). Statistical fraud detection: A review. Statistical Science, 17(3), 235–255. https://doi.org/10.1214/ss/1042727940 DOI: https://doi.org/10.1214/ss/1042727940

Caicedo-Aldaz, J. C., Urgiles-Solorzano, A. S., & Moreira-Santamaria, M. J. (2022). Análisis del impacto económico de la reducción de precios del sector cacaotero, La Concordia 2019-2021. Journal of Economic and Social Science Research, 2(1), 1–17. https://doi.org/10.55813/gaea/jessr/v2/n1/43 DOI: https://doi.org/10.55813/gaea/jessr/v2/n1/43

Carcillo, F., Le Borgne, Y.-A., Caelen, O., Bontempi, G., & Sebban, M. (2021). Combining unsupervised and supervised learning in credit card fraud detection. Information Sciences, 557, 317–331. DOI: https://doi.org/10.1016/j.ins.2019.05.042

Dal Pozzolo, A., Caelen, O., Johnson, R. A., & Bontempi, G. (2018). Calibrating probability with undersampling for unbalanced classification. 2015 IEEE Symposium Series on Computational Intelligence, 159–166. https://doi.org/10.1109/SSCI.2015.33 DOI: https://doi.org/10.1109/SSCI.2015.33

Erazo-Luzuriaga, A. F. (2023). Uso de la minería de datos para la prevención de fraudes en el sector financiero. Horizon Nexus Journal, 1(1), 63-76. https://doi.org/10.70881/hnj/v1/n1/13 DOI: https://doi.org/10.70881/hnj/v1/n1/13

Guitérrez-Portela, F., Moreno-Hernández, J., Echeverry, B., & Jaramillo, A. (2019). USO DE LOS SISTEMAS INTELIGENTES PARA LA DETECCIÓN DE FRAUDES FINANCIEROS. Revista Sinergia, (6), 6-30. Recuperado a partir de http://sinergia.colmayor.edu.co/ojs/index.php/Revistasinergia/article/view/83

Herrera-Sánche, M. J., Casanova-Villalba, C. I., & Ruiz-López, S. E. (2023). Adaptación de las normativas de auditoría frente a los avances tecnológicos emergentes. Revista Científica Ciencia Y Método, 1(3), 1-15. https://doi.org/10.55813/gaea/rcym/v1/n3/16 DOI: https://doi.org/10.55813/gaea/rcym/v1/n3/16

Herrera-Sánchez, M. J., Navarrete-Zambrano, C. M., Núñez-Liberio, R. V., & López-Pérez, P. J. (2023). Elementos de un sistema de costeo para la producción de Sacha Inchi. Journal of Economic and Social Science Research, 3(1), 1–16. https://doi.org/10.55813/gaea/jessr/v3/n1/58 DOI: https://doi.org/10.55813/gaea/jessr/v3/n1/58

Hurtado-Guevara, R. F., & Casanova-Villalba, C. I. (2022). La Auditoría Forense como Herramienta para la Detección de Fraudes Financieros en Ecuador. Revista Científica Zambos, 1(1), 33-50. https://doi.org/10.69484/rcz/v1/n1/52 DOI: https://doi.org/10.69484/rcz/v1/n1/52

Jurgovsky, J., Granitzer, M., Ziegler, K., Calabretto, S., Portier, P.-E., He-Guelton, L., & Caelen, O. (2018). Sequence classification for credit-card fraud detection. Expert Systems with Applications, 100, 234–245. https://doi.org/10.1016/j.eswa.2018.01.037 DOI: https://doi.org/10.1016/j.eswa.2018.01.037

López-Pérez, P. J., Casanova-Villalba, C. I., & Muñoz-Intriago, K. R. . (2022). La Evolución de la Contabilidad Ambiental en Empresas Ecuatorianas. Revista Científica Zambos, 1(3), 44-59. https://doi.org/10.69484/rcz/v1/n3/32 DOI: https://doi.org/10.69484/rcz/v1/n3/32

Navarrete Zambrano, C. M., & Herrera-Sánchez, M. J. (2023). Impacto de la Contabilidad Ambiental en las Empresas del Sector Minero en Ecuador. Revista Científica Zambos, 2(2), 37-49. https://doi.org/10.69484/rcz/v2/n2/42 DOI: https://doi.org/10.69484/rcz/v2/n2/42

Ngai, E. W. T., Hu, Y., Wong, Y. H., Chen, Y., & Sun, X. (2011). The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. Decision Support Systems, 50(3), 559–569. https://doi.org/10.1016/j.dss.2010.08.006 DOI: https://doi.org/10.1016/j.dss.2010.08.006

Phua, C., Lee, V., Smith, K., & Gayler, R. (2010). A comprehensive survey of data mining-based fraud detection research. arXiv preprint arXiv:1009.6119. https://doi.org/10.48550/arXiv.1009.6119

Preciado Ramírez, J. D., & Bravo Bravo, I. F. (2021). Keynes y la crisis financiera de 1929, panorama de la Gran Depresión. Journal of Economic and Social Science Research, 1(1), 38–48. https://doi.org/10.55813/gaea/jessr/v1/n1/19 DOI: https://doi.org/10.55813/gaea/jessr/v1/n1/19

Roy, A., Sun, J., Mahoney, W., AlZain, M. A., & Kantardzic, M. (2018). Deep learning detecting fraud in credit card transactions. Proceedings of the 2018 IEEE International Conference on Big Data, 1846–1855. DOI: https://doi.org/10.1109/SIEDS.2018.8374722

West, J., & Bhattacharya, M. (2016). Intelligent financial fraud detection: A comprehensive review. Computers & Security, 57, 47–66. https://doi.org/10.1016/j.cose.2015.09.005 DOI: https://doi.org/10.1016/j.cose.2015.09.005

Whitrow, C., Hand, D. J., Juszczak, P., Weston, D., & Adams, N. M. (2009). Transaction aggregation as a strategy for credit card fraud detection. Data Mining and Knowledge Discovery, 18(1), 30–55. https://doi.org/10.1007/s10618-008-0116-z DOI: https://doi.org/10.1007/s10618-008-0116-z