Estrategias de agricultura regenerativa para mejorar la salud del suelo
Contenido principal del artículo
Resumen
La degradación progresiva del suelo, intensificada por prácticas agrícolas convencionales, representa una amenaza crítica para la sostenibilidad agroalimentaria. Este estudio tiene como propósito analizar, mediante una revisión bibliográfica sistemática en bases de datos indexadas, las estrategias de agricultura regenerativa más efectivas para restaurar la salud del suelo. Se utilizaron criterios de inclusión rigurosos que priorizaron estudios empíricos revisados por pares sobre cultivos de cobertura, compostaje y rotación diversificada de cultivos. Los resultados evidencian que estas prácticas mejoran significativamente la estructura, fertilidad, actividad microbiana y capacidad de retención de agua del suelo, al tiempo que fortalecen servicios ecosistémicos como el secuestro de carbono y la resistencia a la erosión. Asimismo, se identifican sinergias funcionales entre dichas estrategias, especialmente cuando se aplican de forma conjunta y adaptada al contexto edafoclimático. El análisis concluye que la agricultura regenerativa constituye un enfoque viable, resiliente y ecológicamente restaurador, aunque su efectividad depende de factores locales y de una implementación sostenida, respaldada por políticas públicas e innovación agronómica.
##plugins.themes.bootstrap3.displayStats.downloads##
Detalles del artículo
Sección

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Cómo citar
Referencias
Altieri, M. A., Funes-Monzote, F. R., & Petersen, P. (2011). Agroecologically efficient agricultural systems for smallholder farmers: Contributions to food sovereignty. Agronomy for Sustainable Development, 32(1), 1–13. https://doi.org/10.1007/s13593-011-0065-6 DOI: https://doi.org/10.1007/s13593-011-0065-6
Amelung, W., Bossio, D., de Vries, W., Kögel-Knabner, I., Lehmann, J., Amundson, R., ... & Minasny, B. (2020). Towards a global-scale soil climate mitigation strategy. Nature Communications, 11, 5427. https://doi.org/10.1038/s41467-020-18887-7 DOI: https://doi.org/10.1038/s41467-020-18887-7
Amundson, R., Berhe, A. A., Hopmans, J. W., Olson, C., Sztein, A. E., & Sparks, D. L. (2015). Soil and human security in the 21st century. Science, 348(6235), 1261071. https://doi.org/10.1126/science.1261071 DOI: https://doi.org/10.1126/science.1261071
Basche, A. D., & DeLonge, M. S. (2017). The impact of continuous living cover on soil hydrologic properties: A meta-analysis. Soil Science Society of America Journal, 83(3), 974–983. https://doi.org/10.2136/sssaj2017.03.0077
Basche, A. D., Kaspar, T. C., Archontoulis, S. V., Jaynes, D. B., Parkin, T. B., & Miguez, F. E. (2016). Soil water improvements with the long-term use of a winter rye cover crop. Agricultural Water Management, 172, 40–50. https://doi.org/10.1016/j.agwat.2016.04.006 DOI: https://doi.org/10.1016/j.agwat.2016.04.006
Blanco-Canqui, H., Claassen, M. M., & Presley, D. R. (2012). Summer cover crops fix nitrogen, increase crop yield, and improve soil-crop relationships. Agronomy Journal, 107(3), 1–10. https://doi.org/10.2134/agronj2011.0240 DOI: https://doi.org/10.2134/agronj2011.0240
Borrelli, P., Robinson, D. A., Fleischer, L. R., Lugato, E., Ballabio, C., Alewell, C., ... & Panagos, P. (2017). An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications, 8, 2013. https://doi.org/10.1038/s41467-017-02142-7 DOI: https://doi.org/10.1038/s41467-017-02142-7
Brennan, E. B., & Boyd, N. S. (2012). Winter cover crop seeding rate and variety affect cover crop biomass and weed density. Agronomy Journal, 104(5), 1374–1384. DOI: https://doi.org/10.2134/agronj2011.0330
Caicedo-Aldaz, J. C., & Herrera-Sánchez, D. J. (2022). El Rol de la Agroecología en el Desarrollo Rural Sostenible en Ecuador. Revista Científica Zambos, 1(2), 1-16. https://doi.org/10.69484/rcz/v1/n2/24 DOI: https://doi.org/10.69484/rcz/v1/n2/24
Diacono, M., & Montemurro, F. (2012). Long-term effects of organic amendments on soil fertility. A review. Agronomy for Sustainable Development, 30(2), 401–422. https://doi.org/10.1051/agro/2009040 DOI: https://doi.org/10.1051/agro/2009040
Doran, J. W., & Zeiss, M. R. (2000). Soil health and sustainability: managing the biotic component of soil quality. Applied Soil Ecology, 15(1), 3–11. https://doi.org/10.1016/S0929-1393(00)00067-6 DOI: https://doi.org/10.1016/S0929-1393(00)00067-6
FAO. (2015). Status of the World’s Soil Resources – Main Report. Food and Agriculture Organization of the United Nations. https://www.fao.org/3/i5199e/i5199e.pdf
Giller, K. E., Witter, E., Corbeels, M., & Tittonell, P. (2009). Conservation agriculture and smallholder farming in Africa: The heretics’ view. Field Crops Research, 261, 108014. https://doi.org/10.1016/j.fcr.2009.06.017 DOI: https://doi.org/10.1016/j.fcr.2009.06.017
Guamán-Rivera, S. A. (2022). Desarrollo de Políticas Agrarias y su Influencia en los Pequeños Agricultores Ecuatorianos. Revista Científica Zambos, 1(3), 15-28. https://doi.org/10.69484/rcz/v1/n3/30 DOI: https://doi.org/10.69484/rcz/v1/n3/30
Guamán-Rivera, S. A., & Flores-Mancheno, C. I. (2023). Seguridad Alimentaria y Producción Agrícola Sostenible en Ecuador. Revista Científica Zambos, 2(1), 1-20. https://doi.org/10.69484/rcz/v2/n1/35 DOI: https://doi.org/10.69484/rcz/v2/n1/35
Lal, R. (2020). Regenerative agriculture for food and climate. Journal of Soil and Water Conservation, 75(5), 123A–124A. https://doi.org/10.2489/jswc.2020.0620A DOI: https://doi.org/10.2489/jswc.2020.0620A
Lazcano, C., Gómez-Brandón, M., Revilla, P., & Domínguez, J. (2012). Short-term effects of organic and inorganic fertilizers on soil microbial community structure and function. Biology and Fertility of Soils, 49, 723–733. https://doi.org/10.1007/s00374-012-0761-7 DOI: https://doi.org/10.1007/s00374-012-0761-7
Lehmann, J., Bossio, D. A., Kögel-Knabner, I., & Rillig, M. C. (2020). The concept and future prospects of soil health. Nature Reviews Earth & Environment, 1, 544–553. https://doi.org/10.1038/s43017-020-0080-8 DOI: https://doi.org/10.1038/s43017-020-0080-8
Li, Y., Zhang, Y., Guo, J., Liu, H., & Zhai, P. (2021). Long-term variation of boundary layer height and possible contribution factors: A global analysis. Science of the Total Environment, 796, 148950. https://doi.org/10.1016/j.scitotenv.2021.14895 DOI: https://doi.org/10.1016/j.scitotenv.2021.148950
Liu, X., Herbert, S. J., Hashemi, A. M., Zhang, X., & Ding, G. (2021). Effects of organic compost amendment on water retention of sandy soils in semi-arid regions. Catena, 196, 104899.
Machmuller, M. B., Kramer, M. G., Cyle, K. T., Hill, N., Hancock, D., & Thompson, A. (2015). Emerging land use practices rapidly increase soil organic matter. Nature Communications, 6, 6995. https://doi.org/10.1038/ncomms7995 DOI: https://doi.org/10.1038/ncomms7995
McDaniel, M. D., Tiemann, L. K., & Grandy, A. S. (2014). Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecological Applications, 24(3), 560–570. https://doi.org/10.1890/13-0616.1 DOI: https://doi.org/10.1890/13-0616.1
Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., ... & Winowiecki, L. (2017). Soil carbon 4 per mille. Geoderma, 292, 59–86. https://doi.org/10.1016/j.geoderma.2017.01.002 DOI: https://doi.org/10.1016/j.geoderma.2017.01.002
Montanarella, L., & Vargas, R. (2012). Global governance of soil resources as a necessary condition for sustainable development. Current Opinion in Environmental Sustainability, 4(5), 559–564. https://doi.org/10.1016/j.cosust.2012.06.007 DOI: https://doi.org/10.1016/j.cosust.2012.06.007
Morgan, R. P. C. (2009). Soil erosion and conservation (3rd ed.). Blackwell Publishing. https://doi.org/10.1002/9781118685417
Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., ... & Blair, R. (1995). Environmental and economic costs of soil erosion and conservation benefits. Science, 267(5201), 1117–1123. https://doi.org/10.1126/science.267.5201.1117 DOI: https://doi.org/10.1126/science.267.5201.1117
Rhodes, C. J. (2017). The imperative for regenerative agriculture. Science Progress, 100(1), 80–129. https://doi.org/10.3184/003685017X14876775256165 DOI: https://doi.org/10.3184/003685017X14876775256165
Schipanski, M. E., Barbercheck, M., Douglas, M. R., Finney, D. M., Haider, K., Kaye, J. P., ... & White, C. (2014). A framework for evaluating ecosystem services provided by cover crops in agroecosystems. Agricultural Systems, 125, 12–22. https://doi.org/10.1016/j.agsy.2013.11.004 DOI: https://doi.org/10.1016/j.agsy.2013.11.004
Schulte, R. P. O., Creamer, R. E., Donnellan, T., Farrelly, N., Fealy, R., O'Donoghue, C., & O’hUallachain, D. (2014). Functional land management: A framework for managing soil-based ecosystem services for the sustainable intensification of agriculture. Environmental Science & Policy, 38, 45–58. https://doi.org/10.1016/j.envsci.2013.10.002 DOI: https://doi.org/10.1016/j.envsci.2013.10.002
Smith, R. G., Gross, K. L., & Robertson, G. P. (2008). Effects of crop diversity on agroecosystem function: crop yield response. Ecosystems, 11(3), 355–366. https://doi.org/10.1007/s10021-008-9124-5 DOI: https://doi.org/10.1007/s10021-008-9124-5
Tiemann, L. K., Grandy, A. S., Atkinson, E. E., Marin-Spiotta, E., & McDaniel, M. D. (2015). Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecology Letters, 18(8), 761–771. https://doi.org/10.1111/ele.12453 DOI: https://doi.org/10.1111/ele.12453